Методическая разработка. Тема: «Физиологически основы адаптации организма спортсмена к новым климатическим условиям


Содержание
I . Введение

II . Основная часть

1. Оптиум и пессиум. Сумма эффективности температур

2. Пойкилотермные организмы

2.1 Пассивная устойчивость

2.2 Скорость метаболизма

2.3 Температурные адаптации

3. Гомойотермные организмы

3.1 Температура тела

3.2 Механизм терморегуляции

Список литературы
I. Введение
Организмы – реальные носители жизни, дискретные единицы обмена веществ. В процессе обмена организм потребляет из окружающей среды необходимые вещества и выделяет в нее продукты обмена, которые могут быть использованы другими организмами; умирая, организм также становится источником питания определенных видов живых существ. Таким образом, деятельность отдельных организмов лежит в основе проявления жизни на всех уровнях ее организации.

Изучение фундаментальных процессов обмена веществ в живом организме – предмет физиологии. Однако эти процессы протекают в сложной, динамичной обстановке естественной среды обитания, находятся под постоянным воздействием комплекса ее факторов. Поддержание устойчивого обмена веществ в колеблющихся условиях внешней среды невозможно без специальных адаптаций. Изучение этих адаптаций – задача экологии.

Адаптации к средовым факторам могут основываться на структурных особенностях организма – морфааогические адаптации – или на специфических формах функционального ответа на внешние воздействия – физиологические адаптации. У высших животных важную роль в адаптации играет высшая нервная деятельность , на базе которой формируются приспособительные формы поведения – экологические адаптации.

В области изучения адаптаций на уровне организма эколог приходит в наиболее тесное взаимодействие с физиологией и применяет многие физиологические методы. Однако, применяя физиологические методики, экологи используют их для решения своих специфических задач: эколога в первую очередь интересует не тонкая структура физиологического процесса , а его конечный результат и зависимость процесса от воздействия внешних факторов. Иными словами, в экологии физиологические показатели служат критериями реакции организма на внешние условия, а физиологические процессы рассматриваются прежде всего как механизм, обеспечивающий бесперебойное осуществление фундаментальных физиологических функций в сложной и динамичной среде.
II. ОСНОВНАЯ ЧАСТЬ
1. Оптимум и пессимум. Сумма эффективных температур
Любой организм способен жить в пределах определенного диапазона температур. Диапазон температур на планетах Солнечной системы равен тысячам градусов, а пределы . В которых может существовать известная нам жизнь , очень узки- от -200 до +100°С. Большинство видов обитает в еще более узком температурном диапазоне.

Некоторые организмы. Особенно в стадии покоя, могут существовать при очень низких температурах, а отдельные виды микроорганизмов способны жить и размножаться в городских источниках при температуре, близкой к точке кипения. Диапазон колебаний температуры в воде обычно меньший, чем на суше. Соответственно изменяется и диапазон толерантности. С температурой часто связаны зональность и стратификация как в воде, так и в сухопутных местах обитания. Важны также степень изменчивости температуры и ее колебания , то есть если температура изменяется в пределах от10 до 20 С и среднее значение составляет 15 С, то это не значит, что колеблющаяся температура оказывает такое же действие, что и постоянная. Многие организмы лучше развиваются в условиях переменных температур.

Оптимальные условия те, при которых все физиологические процессы в организме или экосистемах идут с максимальной эффективностью. Для большинства видов температурный оптимум находится в пределах 20-25° С, несколько сдвигаясь в ту или другую стороны: в сухих тропиках он выше – 25-28°С, в умеренных и холодных зонах ниже – 10-20°С. В ходе эволюции, приспосабливаясь не только к периодическим изменениям температуры, но и к разным по теплообеспеченности районам, растения и животные выработали в себе различную потребность к теплу в разные периоды жизни. У каждого вида свой оптимальный диапазон температур, причем и для разных процессов (роста, цветения, плодоношения и др.) имеются тоже «свои» значения оптимумов.

Известно, что физиологические процессы в тканях растений начинаются при температуре +5°С и активизируются при +10°С и выше. В приморских лесах развитие весенних видов особенно четко связаны со среднесуточными температурами от -5°С до +5°С. За день-два до перехода температур через -5°С под лесной подстилкой начинается развитие весенника звездчатого и адониса амурского, а во время перехода через 0°С - появляются первые цветущие особи. И уже при среднесуточной температуре +5°С цветут оба вида. Из-за недостатка тепла ни адонис, ни весенник не образуют сплошного покрова, растут одиночно, реже - по нескольку особей вместе. Чуть-чуть позже них - с разницей в 1-3 дня, трогаются в рост и зацветают ветреницы.

Температуры, «лежащие» между летальными и оптимальными относятся к пессимальным. В зоне пессимумов все жизненные процессы идут очень слабо и очень медленно.

Температуры, при которых происходят активные физиологические процессы, называются эффективными, значения их не выходят за пределы летальных температур. Суммы эффективных температур (ЭТ), или сумма тепла, величина постоянная для каждого вида. Ее рассчитывают по формуле:
ЭТ = (t – t1) × n,
Где t – температура окружающей среды (фактическая), t1 – температура нижнего порога развития, часто 10°С, n – продолжительность развития в днях (часах).

Выявлено, что каждая фаза развития растений и эктотермных животных наступает при определенном значении этого показателя, при условии, что и другие факторы в оптимуме. Так, цветение мать-и-мачехи наступает при сумме температур 77°С, земляники – при 500°С. Сумма эффективных температур (ЭТ) для всего жизненного цикла позволяет выявить потенциальный географический ареал любого вида, а также сделать ретроспективный анализ распространения видов в прошлом. Например, северный предел древесной растительности, в частности лиственницы Каяндера, совпадает с июльской изотермой +12°С и суммой ЭТ выше 10°С – 600°. Для ранних с х культур сумма ЭТ составляет 750°, этого вполне достаточно для выращивания ранних сортов картофеля даже в Магаданской области. А для кедра корейского сумма ЭТ составляет 2200°, пихты цельнолистной – около 2600°, поэтому и растут оба вида в Приморье, и пихта (Abies holophylla) – только на юге края.
2. ПОЙКИЛОТЕРМНЫЕ ОРГАНИЗМЫ
К пойкилотермным (от греч. poikilos – изменчивый, меняющийся) организмам относят все таксоны органического мира, кроме двух классов позвоночных животных – птиц и млекопитающих. Название подчеркивает одно из наиболее за заметных свойств представителей этой группы: неустойчивость, температуры их тела, меняющейся в широких пределах в зависимости от изменений температуры окружающей среды.

Температура тела . Принципиальная особенность теплообмена пойкилотермных организмов заключается в том, что благодаря относительно низкому уровню метаболизма главным источником энергии у них является внешнее тепло. Именно этим объясняется прямая зависимость температуры тела пойкилотермных от температуры среды, точнее от притока теплоты извне, поскольку наземные пойкилотермные формы используют также и радиационный обогрев.

Впрочем, полное соответствие температур тела и среды наблюдается редко и свойственно главным образом организмам очень мелких размеров. В большинстве случаев существует некоторое расхождение между этими показателями. В диапазоне низких и умеренных температур среды температура тела организмов, не находящихся в состоянии оцепенения, оказывается более высокой, а в очень жарких условиях – более низкой. Причина превышения температуры тела над средой заключается в том, что даже при низком уровне обмена продуцируется эндогенное тепло – оно и вызывает повышение температуры тела. Это проявляется, в частности, в существенном повышении температуры у активно двигающихся животных. Например, у насекомых в покое превышение температуры тела над средой выражается десятыми долями градуса, тогда как у активно летающих бабочек, шмелей и других видов температура поддерживается на уровне 36 – 40"С даже при температуре воздуха ниже 10"С.

Пониженная по сравнению со средой температура при жаре свойственна наземным организмам и объясняется в первую очередь потерями тепла с испарением, которое при высокой температуре и низкой влажности существенно увеличивается.

Скорость изменений температуры тела пойкилотермов связана обратной зависимостью с их размерами. Это прежде всего определяется соотношением массы и поверхности : у более крупных форм относительная поверхность тела уменьшается, что ведет к уменьшению скорости потери тепла. Это имеет большое экологическое значение, определяя для разных видов возможность заселения географических районов или биотопов с определенными режимами температур. Показано, например, что у крупных кожистых черепах, пойманных в холодных водах, температура в глубине тела была -, на 18"С выше температуры воды; именно крупные размеры позволяют этим черепахам проникать в более холодные районы океана, что не свойственно менее крупным видам.
2.1 Пассивная устойчивость
Рассмотренные закономерности охватывают диапазон изменений температуры, в пределах которого сохраняется активная жизнедеятельность. За границами этого диапазона, которые широко варьируют у разных видов и даже географических популяций одного вида, активные формы деятельности пойкилотермных организмов прекращаются, и они переходят в состояние оцепенения, характеризующееся резким снижением уровня обменных процессов, вплоть до полной потери видимых проявлений жизни. В таком пассивном состоянии пойкилотермные организмы могут переносить достаточно сильное повышение и еще более выраженное понижение температуры без патологических последствий. Основа такой температурной толерантности заключена в высокой степени тканевой устойчивости, свойственной всем видам пойкилотермных и часто поддерживаемой сильным обезвоживанием (семена , споры, некоторые мелкие животные).

Переход в состояние оцепенения следует рассматривать как адаптивную реакцию: почти не функционирующий организм не подвергается многим повреждающим воздействиям, а также не расходует энергию, что позволяет выжить при неблагоприятных условиях температур в течение длительного времени. Более того , сам процесс перехода в состояние оцепенения может быть формой активной перестройки типа реакции на температуру. «Закаливание» морозостойких растений – активный сезонный процесс , идущий поэтапно и связанный с достаточно сложными физиологическими и биохимическими изменениями в организме. У животных впадение в оцепенение в естественных условиях часто также выражено сезонно и предваряется комплексом физиологических перестроек в организме. Есть данные, что процесс перехода к оцепенению может регулироваться какими-то гормональными факторами; объективный материал по этому поводу еще не достаточен для широких выводов.

При переходе температуры среды за пределы толерантности наступает гибель организма от причин, рассмотренных в начале этой главы.
2.2 Скорость метаболизма
Изменчивость температуры влечет за собой соответствующие изменения скорости обменных реакций. Поскольку динамика температуры тела пойкилотермных организмов определяется изменениями температуры среды интенсивность метаболизма также оказывается в прямой зависимости от внешней температуры. Скорость потребления кислорода , в частности, при быстрых изменениях температуры следует за этими изменениями, увеличиваясь при повышении ее и уменьшаясь при снижении. То же относится и к другим физиологическим функциям : частота сердцебиений, интенсивность пищеварения и т. д. У растений в зависимости от температуры изменяются темпы поступления воды и питательных веществ через корни: повышение температуры до определенного предела увеличивает проницаемость протоплазмы для воды. Показано, что при понижении температуры от 20 до 0"С поглощение воды корнями уменьшается на 60 – 70%. Как и у животных, повышение температуры вызывает у растений усиление дыхания.

Последний пример показывает, что влияние температуры не прямолинейно: по достижении определенного порога стимуляция процесса сменяется его подавлением. Это общее правило, объясняющееся приближением к зоне порога нормальной жизни.

У животных зависимость от температуры весьма заметно выражена в изменениях активности, которая отражает суммарную реакцию организма и у пойкилотермных форм самым существенным образом зависит от температурных условий. Хорошо известно, что насекомые , ящерицы и многие другие животные наиболее подвижны в теплое время суток и в теплые дни, тогда как при прохладной погоде они становятся вялыми, малоподвижными. Начало их активной деятельности определяется скоростью разогревания организма, зависящей от температуры среды и от прямого солнечного облучения. Уровень подвижности активных животных в принципе также связан с окружающей температурой, хотя у наиболее активных форм эта связь может “маскироваться” эндогенной теплопродукцией, связанной с работой мускулатуры.

2.3 Температурные адаптации

Пойкилотермные живые организмы распространены во всех средах, занимая различные по температурным условиям местообитания, вплоть до самых экстремальных: практически они обитают во всем диапазоне температур, регистрируемом в биосфере. Сохраняя во всех случаях общие принципы температурных реакций (рассмотренные выше) , разные виды и даже популяции одного вида проявляют эти реакции в соответствии с особенностями климата , адаптируют ответы организма на определенный диапазон температурных воздействий. Это проявляется, в частности, в формах устойчивости к теплу и холоду: виды, обитающие в более холодном климате , отличаются большей устойчивостью к низким температурам и меньшей к высоким; обитатели жарких регионов проявляют обратные реакции.

Известно, что растения тропических лесов повреждаются и погибают при температурах + 5...+ 8 0С, тогда как обитатели сибирской тайги выдерживают в состоянии оцепенения полное промерзание.

Различные виды карпозубых рыб показали отчетливую корреляцию верхнего летального порога с температурой воды в свойственных виду водоемах.

Арктические и антарктические рыбы , напротив, показывают высокую устойчивость к низким температурам и весьма чувствительны к ее повышению. Так, антарктические рыбы погибают при повышении температуры до 6"С. Аналогичные данные получены по многим видам пойкилотермных животных. Например, наблюдения на о-ве Хоккайдо (Япония) показали отчетливую связь холодоустойчивости нескольких видов жуков и их личинок с их зимней экологией : наиболее устойчивыми оказались виды, зимующие в подстилке; формы, зимующие в глубине почвы, отличались малой устойчивостью к замерзанию и относительно высокой температурой переохлаждения. В опытах с амебами было установлено, что их теплоустойчивость прямо зависит от температуры культивирования.
3. ГОМОЙОТЕРМНЫЕ ОРГАНИЗМЫ
К этой групп пе относят два класса высших позвоночных – птицы и млекопитающие . Принципиальное отличие теплообмена гомойотермныи животных от пойкилотермных заключается в том, что приспособления к меняющимся температурным условиям среды основаны у них на функционировании комплекса активных регуляторных механизмов поддержания теплового гомеостаза внутренней среды организма. Благодаря этому биохимические и физиологические процессы всегда протекают в оптимальных температурных условиях.

Гомойотермный тип теплообмена базируется на высоком уровне метаболизма, свойственном птицам и млекопитающим. Интенсивность обмена веществ у этих животных на один-два порядка выше, чем у всех других живых организмов при оптимальной температуре среды. Так, у мелких млекопитающих потребление кислорода при температуре среды 15 – 0"С составляет примерно 4 – тыс. см 3 кг -1 ч -1 , а у беспозвоночных животных при такой же температуре – 10 – 0 см 3 кг -1 ч -1 . При одинаковой массе тела (2,5 кг) суточный метаболизм гремучей змеи составляет 32,3 Дж/кг (382 Дж/м 2), у сурка – 120,5 Дж/кг (1755 Дж/м 2), у кролика – 188,2 Дж/кг (2600 Дж/м 2).

Высокий уровень метаболизма приводит к тому, что у гомойотермных животных в основе теплового баланса лежит использование собственной теплопродукции, значение внешнего обогрева относительно невелико. Поэтому птиц и млекопитающих относят к эндотермным" организмам. Эндотермия – важное свойство, благодаря которому существенно снижается зависимость жизнедеятельности организма от температуры внешней среды.
3.1 Температура тела
Гомойотермные животные не только обеспечены теплом за счет собственной теплопродукции, но и способны активно регулировать его производство и расходование. Благодаря этому им свойственна высокая и достаточно устойчивая температура тела. У птиц глубинная температура тела в норме составляет около 41"С с колебаниями у разных видов от 38 до 43,5"С (данные по 400 видам). В условиях полного покоя (основной обмен) эти различия несколько сглаживаются, составляя от 39,5 до 43,0"С. На уровне отдельного организма температура тела показывает высокую степень устойчивости: диапазон ее суточных изменений обычно не превышает 2 – ~4"С, причем эти колебания не связаны с температурой воздуха, а отражают ритм обмена веществ. Даже у арктических и антарктических видов при температуре среды до 20 – 50"С мороза температура тела колеблется в пределах тех же 2 – 4"С.

Повышение температуры среды иногда сопровождается некоторым возрастанием температуры тела. Если исключить патологические состояния, оказывается, что в условиях обитания в жарком климате некоторая степень гипертермии может быть адаптивной: при этом уменьшается разница температуры тела и среды и снижаются затраты воды на испарительную терморегуляцию. Аналогичное явление отмечено и у некоторых млекопитающих: у верблюда, например, при дефиците воды температура тела может подниматься от 34 до 40"С. Во всех таких случаях отмечена повышенная тканевая устойчивость к гипертермии.

У млекопитающих температура тела несколько ниже, чем у птиц, и у многих видов подвержена более сильным колебаниям . Отличаются по этому показателю и разные таксоны. У однопроходных ректальная температура составляет 30 – 3"С (при температуре среды 20"С), у сумчатых она несколько выше – около 34"С при той же внешней температуре. У представителей обеих этих групп, а также у неполнозубых довольно заметны колебания температуры тела в связи с внешней температурой: при снижении температуры воздуха от 20 – 5 до 14 –15"С регистрировалось падение температуры тела на два с лишним градуса, а в отдельных случаях – даже на 5"С. У грызунов средняя температура тела в активном состоянии колеблется в пределах 35 – 9,5"С, в большинстве случаев составляя 36 – 37"С. Степень устойчивости ректальной температуры у них в норме выше, чем у рассмотренных ранее групп, но и у них отмечены колебания в пределах 3 – "С при изменении внешней температуры от 0 до 35"С.

У копытных и хищных температура тела поддерживается весьма устойчиво на свойственном виду уровне; межвидовые отличия обычно укладываются в диапазон от 35,2 до 39"С. Для многих млекопитающих характерно снижение температуры во время сна; величина этого снижения варьирует у разных видов от десятых долей градуса до 4 – "С.

Все сказанное относится к так называемой глубокой температуре тела, характеризующей тепловое состояние термостатируемого «ядра» тела. У всех гомойотермных животных наружные слои тела (покровы, часть мускулатуры и т. д.) образуют более или менее выраженную «оболочку», температура которой изменяется в широких пределах. Таким образом, устойчивая температура характеризует лишь область локализации важных внутренних органов и процессов. Поверхностные же ткани выдерживают более выраженные колебания температуры. Это может быть полезным для организма, поскольку при такой ситуации снижается температурный градиент на границе организма и среды, что делает возможным поддержание теплового гомеостаза «ядра» организма с меньшими расходами энергии.
3.2 Механизмы терморегуляции
Физиологические механизмы, обеспечивающие тепловой гомеостаз организма (его «ядра»), подразделяются на две функциональные группы: механизмы химической и физической терморегуляции. Химическая терморегуляция представляет собой регуляцию теплопродукции организма. Тепло постоянно вырабатывается в организме в процессе окислительно-восстановительных реакций метаболизма. При этом часть его отдается во внешнюю среду тем больше, чем больше разница температуры тела и среды. Поэтому поддержание устойчивой температуры тела при снижении температуры среды требует соответствующего усиления процессов метаболизма и сопровождающего их теплообразования, что компенсирует теплопотери и приводит к сохранению общего теплового баланса организма и поддержанию постоянства внутренней температуры. Процесс рефлекторного усиления теплопродукции в ответ на снижение температуры окружающей среды и носит название химической терморегуляции. Выделение энергии в виде тепла сопровождает функциональную нагрузку всех органов и тканей и свойственно всем живым организмам. Специфика гомойотермных животных состоит в том, что изменение теплопродукции как реакция на меняющуюся температуру представляет у них специальную реакцию организма, не влияющую на уровень функционирования основных физиологических систем.

Специфическое терморегуляторное теплообразование сосредоточено преимущественно в скелетной мускулатуре и связано с особыми формами функционирования мышц, не затрагивающими их прямую моторную деятельность. Повышение теплообразования при охлаждении может происходить и в покоящейся мышце, а также при искусственном выключении сократительной функции действием специфических ядов.

Один из наиболее обычных механизмов специфического терморегуляторного теплообразования в мышцах – так называемый терморегуляционный тонус. Он выражен микросокращениями фибрилл, регистрируемыми в виде повышения электрической активности внешне неподвижной мышцы при ее охлаждении. Терморегуляционный тонус повышает потребление кислорода мышцей подчас более чем на 150 %. При более сильном охлаждении наряду с резким повышением терморегуляционного тонуса включаются видимые сокращения мышц в форме холодовой дрожи. Газообмен при этом возрастает до 300 – 400 % . Характерно , что по доле участия в терморегуляторном теплообразовании мышцы неравноценны. У млекопитающих наиболее велика роль жевательной мускулатуры и мышц, поддерживающих позу животного, т. е. функционирующих в основном как тонические. У птиц наблюдается сходное явление.

При длительном воздействии холода сократительный тип термогенеза может быть в той или иной степени замещен (или дополнен) переключением тканевого дыхания в мышце на так называемый свободный (нефосфорилирующий) путь, при котором выпадает фаза образования и последующего расщепления АТФ. Этот механизм не связан с сократительной деятельностью мышц. Общая масса тепла, выделяющегося при свободном дыхании, практически такая же, как и при дрожевом термогенезе, но при этом большая часть тепловой энергии расходуется немедленно, а окислительные процессы не могут быть заторможены недостатком АДФ или неорганического фосфата.

Последнее обстоятельство позволяет беспрепятственно поддерживать высокий уровень теплообразования в течение длительного времени.

У млекопитающих имеется еще одна форма недрожевого термогенеза, связанная с окислением особой бурой жировой ткани, откладывающейся под кожей в области межлопаточного пространства, шеи и грудной части позвоночника. Бурый жир содержит большое количество митохондрий и пронизан многочисленными кровеносными сосудами. Под действием холода увеличивается кровоснабжение бурого жира, интенсифицируется его дыхание , возрастает выделение тепла. Важно, что при этом непосредственно нагреваются расположенные вблизи органы: сердце , крупные сосуды, лимфатические узлы, а также центральная нервная система . Бурый жир используется, главным образом, как источник экстренного теплообразования, в частности при разогревании организма животных, выходящих из состояния спячки. Роль бурого жира у птиц не ясна. Долгое время считалось, что его у них вообще нет; в последнее время появились сообщения об обнаружении этого типа жировой ткани у птиц, но ни точной идентификации, ни функциональной оценки ее не проведено.

Изменения интенсивности обмена веществ вызванные влиянием температуры среды на организм гомойотермных животных, закономерны. В определенном интервале внешних температур теплопродукция, соответствующая обмену покоящегося организма, полностью скомпенсирована его «нормальной» (без активной интенсификации) теплоотдачей. Теплообмен организма со средой сбалансирован. Этот температурный интервал называют термонейтральной зоной. Уровень обмена в этой зоне минимален. Нередко говорят о критической точке, подразумевая конкретное значение температуры, при котором достигается тепловой баланс со средой. Теоретически это верно, но экспериментально установить такую точку практически невозможно из-за постоянных незакономерных колебаний метаболизма и нестабильности теплоизолирующих свойств покровов.

Понижение температуры среды за пределы термонейтральной зоны вызывает рефлекторное повышение уровня обмена веществ и теплопродукции до уравновешивания теплового баланса организма в новых условиях. В силу этого температура тела остается неизменной.

Повышение температуры среды за пределы термонейтральной зоны также вызывает повышение уровня обмена веществ, что вызвано включением механизмов активизации отдачи тепла, требующих дополнительных затрат энергии на свою работу. Так формируется зона физической терморегуляции , на протяжении которой температура такыре остается стабильной. По достижении определенного порога механизмы усиления теплоотдачи оказываются неэффективными, начинается перегрев и в конце концов гибель организма.

Видовые отличия химической терморегуляции выражаются в разнице уровня основного (в зоне термонейтральности) обмена, положения и ширины термонейтральной зоны, интенсивности химической терморегуляции (повышение обмена при снижении температуры среды на 1"С), а также в диапазоне эффективного действия терморегуляции. Все эти параметры отражают экологическую специфику отдельных видов и адаптивным образом меняются в зависимости от географического положения региона, сезона года, высоты над уровнем моря иряда других экологических факторов.

Физическая терморегуляция объединяет комплекс морфофизиологических механизмов, связанных с регуляцией теплоотдачи организма как одной из составных частей его общего теплового баланса. Главное приспособление, определяющее общий уровень теплоотдачи организма гомойотермного животного,– строение теплоизолирующих покровов. Теплоизоляционные структуры (перья, волосы) не обусловливают гомойотермию, как это иногда думают. В ее основе лежит высокий и что, уменьшая теплопотери, она способствует поддер гомойотермии с меньшими энергетическими затратами. Это особенно важно при обитании в условиях устойчиво низких температур, поэтому теплоизолирующие покровные структуры и прослойки подкожного жира наиболее выражены у животных из регионов холодного климата.

Механизм теплоизолирующего действия перьевого и волосяного покровов заключается в том, что определенным образом расположенные, различные по структуре группы волос или перьев удерживают вокруг тела слой воздуха, который и выполняет роль теплоизолятора . Адаптивные изменения теплоизолирующей функции покровов сводятся к перестройке их структуры, включающей соотношение различных типов волос или перьев, их длину и густоту расположения. Именно по этим параметрам отличаются обитатели различных климатических зон, они же определяют сезонные изменения теплоизоляции. Показано, например, что у тропических млекопитающих теплоизоляционные свойства шерстного покрова почти на порядок ниже, чем у обитателей Арктики. Тому же адаптивному направлению следуют сезонные изменения теплоизолирующих свойств покровов в процессе линьки.

Рассмотренные особенности характеризуют устойчивые свойства теплоизолирующих покровов, определяющие общий уровень тепловых потерь, и, по существу, не представляют собой активных терморегуляционных реакций. Возможность лабильной регуляции теплоотдачи определяется подвижностью перьев и волос, в силу чего на фоне неизменной структуры покрова возможны быстрые изменения толщины теплоизолирующей воздушной прослойки, а соответственно и интенсивности теплоотдачи. Степень распущенности волос или перьев может быстро меняться в зависимости от температуры воздуха и от активности самого животного. Такую форму физической терморегуляции обозначают как пиломоторную реакцию. Эта форма регуляции теплоотдачи действует главным образом при низкой температуре среды и обеспечивает не менее быстрый и эффективный ответ на нарушения теплового баланса, чем химическая терморегуляция, требуя при этом меньших затрат энергии.

Регуляторные реакции, направленные на сохранение постоянной температуры тела при перегреве, представлены различными механизмами усиления теплоотдачи во внешнюю среду. Среди них широко распространена и обладает высокой эффективностью теплоотдача путем интенсификации испарения влаги с поверхности тела или (и) верхних дыхательных путей. При испарении влаги расходуется тепло, что может способствовать сохранению теплового баланса. Реакция включается при признаках начинающегося перегрева организма. Итак, адаптивные изменения теплообмена у гомойотермных животных могут быть направлены не только на поддержание высокого уровня обмена веществ, как у большинства птиц и млекопитающих, но и на установку низкого уровня в условиях, грозящих истощением энергетических резервов.
Список литературы
1. Основы экологии : Учебник В.В.Маврищев. Мн.: Выш. Шк., 2003. – 416 с.

2. http :\\Абиотические факторы среды.htm

3. http :\\Абиотические факторы среды и организмы.htm

Расскажу про одну из самых невероятных, с точки зрения обыденных представлений, практик - практику свободной адаптации к холоду.

Согласно общепринятым представлениям человек не может находиться на холоде без теплой одежды. Холод абсолютно губителен, и стоит волею судьбы выйти на улицу без куртки, как несчастного ждет мучительное замерзание, и неизбежный букет болезней по возвращении.

Иначе говоря, общепринятые представления вовсе отказывают человеку в способности адаптироваться к холоду. Считается, что диапазон комфорта расположен исключительно выше комнатной температуры.

Вроде и не поспоришь. Нельзя же в России всю зиму проходить в шортах и футболке…

В том то и дело, что можно!!

Нет, не стиснув зубы, обрастая сосульками, чтобы поставить нелепый рекорд. А свободно. Ощущая себя, в среднем, даже более комфортно, чем окружающие. Это реальный практический опыт, сокрушительно ломающий общепринятые шаблоны.

Казалось бы, зачем владеть подобными практиками? Да все очень просто. Новые горизонты всегда делают жизнь более интересной. Убирая внушенные страхи, становишься свободнее.
Колоссально расширяется диапазон комфорта. Когда остальным, то жарко, то холодно, тебе везде хорошо. Полностью исчезают фобии. Взамен страха заболеть, недостаточно тепло одевшись, ты получаешь полную свободу и уверенность в своих силах. Бегать по морозу действительно приятно. Если же и выходишь за пределы своих сил, то это не влечет никаких последствий.

Как это вообще возможно? Все очень просто. Мы устроены намного лучше, чем принято считать. И у нас есть механизмы, позволяющие нам свободно находиться на холоде.

Во первых, при колебаниях температуры в определенных пределах меняется скорость метаболизма, свойства кожных покровов, и т.д. Чтобы не рассеивать тепло, внешний контур тела сильно снижает температуру, в то время, как температура ядра остается очень стабильной. (Да, холодные лапы - это нормально!! Как бы нас не убеждали в детстве, это не признак замерзания!)

При еще большей холодовой нагрузке включаются специфические механизмы термогенеза. Мы знаем про сократительный термогенез, проще говоря, дрожь. Механизм, по сути, аварийный. Дрожь согревает, но включается она не от хорошей жизни, а когда действительно мерзнешь.

Но есть еще несократительный термогенез, производящий тепло за счет прямого окисления питательных веществ в митохондриях непосредственно в тепло. В кругу людей, практикующих холодовые практики этот механизм прозвали просто "печкой". Когда "печка" включается, тепло мерно производится в фоновом режиме в количестве достаточном для длительного нахождения на морозе без одежды.

Субъективно это ощущается довольно необычно. В русском языке словом «холодно» называют два, принципиально разных ощущения: «холодно на улице» и «холодно тебе». Они могут присутствовать независимо. Можно мерзнуть в достаточно теплом помещении. А можно ощущать кожей жгучий холод снаружи, но совершенно не замерзать и не испытывать дискомфорта. Более того, это приятно.

Как же научится использованию этих механизмов? Решительно скажу, что считаю рискованным «обучение по статье». Технологию нужно передавать лично в руки.

Несократительный термогенез запускается на достаточно серьезном морозе. И включение его достаточно инерционно. «Печка» начинает работать не раньше, чем через несколько минут. Поэтому, как ни парадоксально, научиться свободно гулять на холоде, гораздо легче в лютый мороз, чем в прохладный осенний день.

Стоит выйти на мороз, как начинаешь ощущать холод. Неопытного человека при этом охватывает панический ужас. Ему кажется, что если уже сейчас холодно, то через десяток минут настанет полный абзац. Многие просто не дожидаются выхода «реактора» на рабочий режим.

Когда «печка» все же запускается, становится ясно, что, вопреки ожиданиям, на холоде находиться довольно комфортно. Этот опыт полезен тем, что немедленно рвет внушенные с детства шаблоны о невозможности подобного, и помогает иначе посмотреть на реальность в целом.

Впервые выходить на мороз нужно под руководством человека, который уже умеет это делать, или там, где вы в любой момент можете вернуться в тепло!

И выходить нужно предельно раздетым. Шорты, лучше даже без майки и ничего больше. Организм нужно как следует напугать, чтобы он включил забытые системы адаптации. Если испугаться, и надеть свитер, мастерку, или что-то подобное, то потери тепла будут достаточными, чтобы очень сильно замерзнуть, но «реактор» не запустится!

По той же причине опасно постепенное «закаливание». Снижение температуры воздуха или ванны «на один градус в десять дней» ведет к тому, что рано или поздно наступает тот момент, когда уже достаточно холодно, чтобы заболеть, но недостаточно для запуска термогенеза. Воистину, такое закаливание могут выдержать только железные люди. А вот выйти сразу на мороз или нырнуть в прорубь сможет практически каждый.

После сказанного уже можно догадаться, что адаптация не к морозу, а к низким плюсовым температурам более сложная задача, чем пробежки по морозу, и требует она более высокой подготовки. «Печка» при +10 не включается вовсе, и работают только неспецифические механизмы.

Следует помнить, что нельзя терпеть выраженный дискомфорт. Когда все получается правильно, никакого переохлаждения не развивается. Если начинаешь сильно замерзать, значит, необходимо прервать практику. Периодические выходы за пределы комфорта неизбежны (иначе и не раздвинуть эти пределы), но нельзя допускать перерастание экстрима в пипец.

Система обогрева со временем устает работать под нагрузкой. Пределы выносливости весьма далеко. Но они есть. Можно свободно гулять при -10 весь день, а при -20 пару часов. Но не получится пойти в одной майке в лыжный поход. (Полевые условия это вообще отдельная тема. Зимой экономить на взятой с собой в поход одежде нельзя! Можно ее сложить в рюкзак, но никак не забыть дома. В бесснежное же время можно рискнуть оставить дома лишние вещи, которые берутся только из-за страха перед погодой. Но, при наличии опыта)

Для большего комфорта лучше гулять так на более-менее чистом воздухе, подальше от истоников дыма и от смога - чувствительность к тому, чем мы дышим, в этом состоянии возрастает в разы. Понятно, что с куревом и бухлом практика вообще несовместима.

Нахождение на холоде может вызвать холодовую эйфорию. Ощущение приятное, но требует предельного самоконтроля, во избежание потери адекватности. Это одна из причин, по которой очень нежелательно начинать практику без учителя.

Еще один важный нюанс - длительная перезагрузка системы обогрева после значительных нагрузок. Как следует нахватав холода можно ощущать себя довольно неплохо, но при заходе в теплое помещение «печка» отключается, и тело начинает согреваться дрожью. Если при этом снова выйти на мороз, «печка» не включится, и можно сильно замерзнуть.

Наконец, нужно понимать, что владение практикой не дает гарантии не мерзнуть нигде и никогда. Состояние меняется, и влияет много факторов. Но, вероятность огрести неприятностей от погоды все же снижается. Подобно тому, как вероятность физически сдуться у спортсмена всяко ниже, чем у хлюпика.

Увы, создать цельную статью не получилось. Я лишь в общих чертах обрисовал эту практику (точнее, комплекс практик, ибо ныряние в прорубь, пробежки в футболке по морозу и шатание по лесу в стиле Маугли это разное). Подытожу тем, с чего начал. Владение собственными ресурсами позволяет избавиться от страхов, и чувствовать себя куда комфортнее. И это интересно.

Дмитрий Куликов

Как и любое существо, лошадь способна до некоторой степени адаптироваться к холоду. Вопрос: насколько безобидной для здоровья лошади будет такая адаптация? Какую температуру можно считать критической? Есть ли у нас уверенность, что все лошади одинаково реагируют на холод?

Даже если говорить о здоровой лошади, что практически нереально после ее участия в спорте или покатушках любого сорта, то так ли ей хорошо в холод, под дождем и снегом, как верят в это конепользователи всех конфессий от спортсменов до натуристов?

Благодаря «спортивным» ветеринарам, мы имеем огромное количество исследований на тему влияния на лошадь жары и перегрева - оно и понятно: пробеги, скачки... И слишком мало серьезных работ о влиянии на организм холода. Такие исследования можно пересчитать по пальцам.

Вот рысачники выяснили, что при температуре ниже -23 °С рысаки мрут на дорожках... От холодного воздуха.

А при тренировках на морозе в -22 °С остаются живы! Из чего делается вывод, что в -22 °С выходить на дорожку необходимо, но в попоне...

Финны в течение нескольких лет детально выясняли, как мерзнут финские лошадки, измеряли толщину подкожного жира, длину волоса - и выяснили-таки, что мерзнут они сильно. Вывод: надо надевать попоны.

Вот, пожалуй, и все исследования...

Разумеется, любые попытки изучения вопроса о влиянии холода на организм будут неполноценными, пока мы не узнаем, что думает по этому поводу сама лошадь.

А пока нет уверенности в том, что лошадь на самом деле чувствует зимой, мы вынуждены руководствоваться строго научными данными анатомии и физиологии и, разумеется, собственными догадками и здравым смыслом. Ведь наша задача - сделать любую погоду нашего не самого нежного климата максимально комфортной для лошадей.

Комфортной для лошади принято считать температуру от +24 до +5°С (при отсутствии других раздражающих факторов, разумеется). При таком температурном режиме у лошади нет необходимости расходовать дополнительную энергию на обогрев при условии, что она здорова и находится в хорошей кондиции и в приличных условиях содержания.

Очевидно, что в любом случае при температуре ниже -ГС лошадь будет нуждаться в дополнительных источниках тепла, а зачастую, учитывая влажность, ветреность и пр., такая нужда может возникнуть даже в диапазоне «комфортных» температур.

Какова физиологическая реакция организма на холод?

Немедленная реакция. Возникает в ответ на внезапное резкое изменение температуры воздуха. Лошадь заметно мерзнет, шерсть ее встает дыбом (пилоэрекция), кровь от конечностей отливает к внутренним органам - ноги, уши, нос становятся холодными. Лошадь стоит, поджав хвост, не двигаясь в целях экономии энергии.

Адаптация. Это следующая реакция лошади, подвергающейся дальнейшему постоянному воздействию холода. Обычно на некоторую адаптацию к холоду лошади требуется от 10 до 21 дня. Например, лошадь, содержащаяся при температуре +20°С, внезапно попадает в условия с температурой +5°С. Она адаптируется к новым условиям среды за 21 день. При дальнейшем снижении температуры с +5 до -5°С лошади понадобится еще до 21 дня на адаптацию. И так до тех пор, пока температура не достигнет нижней критической отметки (НКО) в -15°С для взрослой лошади или 0°С - для растущей. По достижении критической температуры организм лошади начнет работать в «аварийном режиме», не жить, а выживать, что приведет к серьезному и, порой, необратимому, истощению его ресурсов.

Как только НКО достигнута, начинаются стрессовые физиологические изменения, и лошади, чтобы справиться с холодом, необходимо вмешательство человека: обогрев, дополнительное питание.

Понятно, что все данные условны и различаются для каждой конкретной лошади. Однако точными данными наука на сегодняшний день не располагает.

Физиологические изменения заключаются в «сосредотачивании» кровоснабжения на внутренних органах, кровеносная система начинает работать как бы по «малому кругу». Происходит понижение респираторного и сердечного ритмов для сохранения тепла, следствием чего является малоподвижность лошади в зимнее время. Наиболее заметным внешним признаком физиологических изменений является отращивание длинной густой шерсти.

Обрастание по интенсивности сильно варьируется от лошади к лошади при одинаковых условиях содержания. Имеют большое значение порода, здоровье, упитанность, пол, тип. Чем более «толстокожа» лошадь, чем тяжелее ее тип, тем больше она обрастает. Как отмечает Н. Д. Алексеев (1992), у якутских лошадей по сравнению с лошадьми других пород самая толстая кожа (4,4 + 0,05 мм зимой в области последнего ребра). Сравните: у европейской теплокровной лошади толщина кожи в этом же месте составляет примерно 3-3,6 мм. Бывают исключения, связанные с индивидуальными особенностями метаболизма. Играет роль темперамент: активные «тонкокожие» жеребцы теплокровных пород обрастают мало или не обрастают вообще. Например, Као живет в тех же условиях, что и другие наши лошади, но не обрастает вовсе - ходит зимой в летней шерсти. Пони, тяжеловозы, рысаки обрастают, как правило, сильнее, у них появляются ярко выраженные «щетки», существенно усиливается оволосение от запястья до венчика и появляется не сильно привлекательная, прямо-таки поповская борода. То же касается больных и голодных лошадей - организм пытается компенсировать отсутствие термоизоляционной жировой прослойки и недостаточность питания, тратя последние запасы на отращивание волоса, хотя и здесь все строго индивидуально. По длине шерсти лошади всегда можно безошибочно судить о ее здоровье, содержании и уходе.

В общем, обрастание, вроде бы, привычная для всех вещь... Но чего она стоит лошади? Я не скажу лучше, чем супруг, потому привожу прямую цитату: «На процесс обрастания уходит солидная часть физиологических сил. Просто попробуйте подсчитать, во что обходится организму лошади выращивание, содержание, осаливание и т.д. длинной шерсти. Ей ведь не муж шубку купил, ей же пришлось снять с собственного биологического и физиологического сйета очень большую "сумму" и потратить ее на шерсть, притом, что биологический ресурс у лошади не так велик. Природой установлен некий "норматив утепления" для данной полосы (север, запад, центр России). Вычислить этот норматив можно легко, анализируя нормы утепления диких зверей, коренным образом обитающих в естественной среде данного региона, отсчитав и проанализировав длину шерсти, глубину и плотность подшерстка, температуру тела (в норме) данных зверей. Это - нормальная "природная" программа, отвечающая требованиям климата и сезона. Человек в нее не вмешивался.

Путем естественного отбора этот тепловой норматив и норматив утепления вырабатывался десятки тысяч лет. Именно такое количество защитной шерсти, именно такая густота и глубина подшерстка, именно такая температура тела, как предъявлена дикими естественными обитателями региона, - и является нормой, обеспечивающей выживание, а возможно, и некоторый комфорт.

Лошадь здесь в "законодатели мод" не годится, будучи привнесенным, чуждым данной полосе существом - не важно, в каком поколении. Эдакой "потерявшейся экзотической собачкой".

Но для адаптационных эволюционных изменений нужны тысячелетия!

Все, что способна "предъявить" российским холодам лошадь - это 2,5 - 3 см шерсти. Без подшерстка.

Выяснив несоответствие качества лошадиного утепления местным природным нормативам, мы можем с уверенностью говорить о физиологических страданиях лошади, о нанесении холодом лошади как физиологического, так и функционального вреда. И это, и только это -будет строго научной точкой зрения. Довод, базирующийся на анализе того, что "носят в данной полосе" для выживания - неопровержим и очень серьезен. Даже два часа зимней прогулки в условиях воздействия на организм естественных климатических условий Северо-Запада, к сожалению, либо очень дискомфортны для лошади, либо откровенно опасны».

Способность адаптации к холоду обусловлена величиной энергетических и пластических ресурсов организма, при их отсутствии адаптация к холоду невозможна. Ответная реакция на холод развивается стадийно и практически во всех системах организма. Ранняя стадия адаптации к холоду может сформироваться при температуре 3С о в течении 2мин, а при 10С о за 7мин.

Со стороны сердечно-сосудистой системы можно выделить 3 фазы адаптационных реакций. 2 первые являются оптимальными (желательными) при воздействии холодом с целью закаливания. Они проявляются в включении, посредством нервной и эндокринной системы, механизмов несократительного термогенеза, на фоне сужения сосудистого русла в коже, результатом чего является теплопродукция и повышение температуры «ядра», что приводит к рефлекторному увеличению кровотока в коже и повышенной теплоотдаче, в том числе посредством включения резервных капилляров. Внешне это выглядит равномерной гиперемией кожи, приятным ощущением тепла и бодрости.

Третья фаза развивается при перегрузке холодовым агентом по интенсивности или длительности. Активная гиперемия сменяется на пассивную (застойную), ток крови замедляется, кожа приобретает синюшный оттенок (венозная застойная гиперемия), появляется тремор мышц, «гусиная кожа». Эта фаза ответной реакции не желательна. Она свидетельствует об истощении компенсаторных возможностей организма, их недостаточности для восполнения теплопотери и переходе на сократительный термогенез.

Реакции сердечно-сосудистой системы складываются не только из перераспределения кровотока в кожном депо. Сердечная деятельность уряжается, фракция выброса становится больше. Происходит некоторое снижение показателей вязкости крови и повышение артериального давления. При передозировке фактором (третья фаза) происходит повышение вязкости крови с компенсаторным перемещением межтканевой жидкости в сосуды, что приводит к дегидратации тканей.

Регуляция дыхания
В обычных условиях дыхание регулируется по отклонению парциального давления О 2 иСО 2 и величины рН в артериальной крови. Умеренная гипотермия возбуждающе действует на дыхательные центры и угнетающе на рН чувствительные хеморецепторы. При длительном холоде присоединяется спазм бронхиальной мускулатуры, что увеличивает сопротивление дыханию и газообмену, а также снижается хемочувствительность рецепторов. Происходящие процессы лежат в основе холодовой гипоксии, а при срыве адаптации к так называемой «полярной» одышке. На лечебные холодовые процедуры органы дыхания реагируют задержкой в первый момент с последующим учащением на короткое время. В дальнейшем дыхание замедляется и становится глубоким. Происходит усиление газообмена, окислительных процессов, основного обмена.

Метаболические реакции
Реакции метаболизма охватывают все стороны обмена. Основным направлением, естественно, является увеличение теплопродукции. В первую очередь происходит активация несократительного термогенеза путём мобилизации метаболизма липидов (концентрация в крови свободных жирных кислот под действием холода возрастает на 300%) и углеводов. Так же активируется потребление тканями кислорода, витаминов, макро- и микроэлементов. В дальнейшем, при некомпенсированных тепловых потерях, происходит включение дрожательного термогенеза. Термогенная активность дрожи выше таковой при производстве произвольных сократительных движений, т.к. не совершается работа, а вся энергия превращается в тепло. В эту реакцию включаются все мышцы, даже дыхательная мускулатура грудной клетки.

Водно-солевой обмен
При остром действии холода первоначально активируется симпатико-адреналовая система и увеличивается секреция щитовидной железы. Повышается выработка антидиуретического гормона, который уменьшает реабсорбцую натрия в почечных канальцах и увеличивает экскрецию жидкости. Это приводит к развитию дегидратации, гемоконцентрации и повышению осмолярности плазмы. По-видимому, выведение воды служит защитным действием в отношении тканей, которые могут повреждаться на фоне её кристаллизации под действием холода.

Основные стадии адаптации к холоду
Долговременная адаптация к холоду сказывается неоднозначно на структурно-функциональных перестройках организма. Наряду с гипертрофией симпатико-адреналовой системы, щитовидной железы, системы митохондрий в мышцах и всех звеньев транспорта кислорода, наблюдается жировая гипотрофия печени и снижение ей дезинтоксикационных функций, дистрофические явления со стороны ряда систем со снижением их функционального потенциала.

Выделяют 4 адаптационных стадии к холоду
(Н.А. Барбараш, Г.Я. Двуреченская)

Первая - аварийная - неустойчивой адаптации к холоду
Характеризуется резкой реакцией ограничения теплоотдачи в виде спазма периферических сосудов. Увеличение теплопродукции происходит за счет распада запасов АТФ и сократительного термогенеза. Развивается дефицит богатых энергией фосфатов. Возможно развитие повреждений (отморожения, ферментемия, некротизация тканей).

Вторая - переходная - стадия срочной адаптации
Отмечается уменьшение стресс-реакции при сохранении гиперфункции симпатико-адреналовой системы и щитовидной железы. Активизируются процессы синтеза нуклеиновых кислот и белков, ресинтез АТФ. Уменьшается вазоконстрикция периферических тканей, а, следовательно, риск развития повреждения.

Третья - устойчивости - стадия долгосрочной адаптации
Долговременная адаптация формируется при периодическом действии холода. При его непрерывном воздействии она менее вероятна. Она характеризуется гипертрофией симпатико-адреналовой системы, щитовидной железы, усилением окислительно-восстановительных реакций, что приводит как к прямой адаптации к холоду (стационарное увеличение теплопродукции для сохранения гомеостаза), так и положительной перекрестной - атеросклерозу, солевой гипертонии, гипоксии. Более устойчивы к стрессу становятся регуляторные системы, включая высшие.

Четвертая стадия - истощения
Развивается при непрерывном длительном или интенсивном периодическом воздействии холода. Она характеризуется явлениями негативной перекрестной адаптацией, с развитием хронических заболеваний и дистрофических процессов со снижением функции в ряде внутренних органов.

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...