Поверхностное натяжение жидкости кратко. Поверхностное натяжение

Определение 1

Поверхностное натяжение – порыв жидкости уменьшить собственную свободную поверхность, то есть сократить избыток потенциальной энергии на границе разъединения с газообразной фазой.

Упругими характеристиками оснащены не только твердые физические тела, но и поверхность самой жидкости. Каждый в своей жизни видел, как растягивается мыльная пленка при небольшом выдувании пузырей. Силы поверхностного натяжения, которые возникают в мыльной пленке, удерживают на определенный период времени воздух, аналогичному тому, как резиновая растянувшаяся камера сохраняет воздух в футбольном мяче.

Поверхностное натяжение появляется на границе раздела основных фаз, например, газообразной и жидкой, или жидкой и твердой. Это непосредственно обусловлено тем, что элементарные частицы поверхностного слоя жидкости всегда испытывают различную силу притяжения изнутри и снаружи.

Указанный физический процесс возможно рассматривать на примере капли воды, где жидкость движется себя так, как будто она находится в эластичной оболочке. Здесь атомы поверхностного слоя жидкого вещества притягиваются к собственным внутренним соседям сильнее, чем к внешним частицам воздуха.

В целом поверхностное натяжение можно объяснить, как бесконечно малую или элементарную работу $\sigma A$, которую необходимо совершить для увеличения общей площади поверхности жидкости на бесконечно малую величину $dS$ при неизменной температуре $dt$.

Механизм возникновения поверхностного натяжения в жидкостях

Рисунок 2. Скалярная положительная величина. Автор24 - интернет-биржа студенческих работ

Жидкость, в отличие от твердых тел и газов, не способна заполнить весь объем сосуда, в который она была помещена. Между паром и жидким веществом формируется определенная граница раздела, которая действует в особых условиях по сравнению с другой массой жидкости. Рассмотрим для более наглядного примера две молекулы $A$ и $B$. Частица $A$ находится внутри самой жидкости, молекула $B$ – непосредственно на ее поверхности. Первый элемент окружен другими атомами жидкости равномерно, поэтому действующие на молекулу силы со стороны попадающих в сферу межмолекулярного взаимодействия частиц всегда скомпенсированы, или, иными словами, их равнодействующая мощность равна нулю.

Молекула $B$ с одной стороны обрамлена молекулами жидкости, а с другой стороны –атомами газа, итоговая концентрация которых в значительной степени ниже, чем объединение элементарных частиц жидкости. Так как со стороны жидкости на молекулу $B$ воздействует гораздо больше молекул, чем со стороны идеального газа, равнодействующую всех межмолекулярных сил уже невозможно приравнять нулю, так как этот параметр направлен внутрь объема вещества. Таким образом, для того чтобы молекула из глубины жидкости оказалась в поверхностном слое, следует выполнить работу против нескомпенсированных сил. А это означает, что атомы приповерхностного уровня, по сравнению с частицами внутри жидкости, оснащены избыточной потенциальной энергией, которая носит название поверхностной энергии.

Коэффициент поверхностного натяжения

Рисунок 3. Поверхностное напряжение. Автор24 - интернет-биржа студенческих работ

Определение 2

Коэффициент поверхностного натяжения – это физический показатель, характеризующий определенную жидкость и численно равный соотношению поверхностной энергии к общей площади свободной среды жидкости.

В физике основной единицей измерения коэффициента поверхностного натяжения в концепции СИ является {N}/{m}.

Указанная величина напрямую зависит от:

  • природы жидкости (у «летучих элементах таких, как спирт, эфир, бензин, коэффициент поверхностного натяжения значительно меньше, чем у «нелетучих – ртути, воды);
  • температуры жидкого вещества (чем выше температура, тем меньше итоговое поверхностное натяжение);
  • свойств идеального газа, граничащий с данной жидкостью;
  • наличия стабильных поверхностно-активных элементов таких, как стиральный порошок или мыло, которые способны уменьшить поверхностное натяжение.

Замечание 1

Также следует отметить, что параметр поверхностного натяжения не зависит от начальной площади свободной среды жидкости.

Из механики также известно, что неизменным состояниям системы всегда соответствует минимальное значение ее внутренней энергии. Вследствие такого физического процесса жидкое тело часто принимает форму с минимальной поверхностью. Если на жидкость не влияют посторонние силы или их действие крайне мало, ее элементы к форме сферы в виде капли воды или мыльного пузыря. Аналогичным образом начинают вести себя вода находясь в невесомости. Жидкость движется так, как будто по касательной к ее основной поверхности действуют факторы, сокращающие данную среду. Эти силы называются силами поверхностного натяжения.

Следовательно, коэффициент поверхностного натяжения возможно также определить, как основной модуль силы поверхностного натяжения, который в общем действует на единицу длины начального контура, ограничивающего свободную среду жидкости. Наличие указанных параметров делает поверхность жидкого вещества похожей на растянутую упругую пленку, с единственной разницей, что неизменные силы в пленке непосредственно зависят от площади ее системы, а сами силы поверхностного натяжения способны самостоятельно работать. Если положить небольшую швейную иглу на поверхность воды, гладь прогнется и не даст ей утонуть.

Действием внешнего фактора можно описать скольжение легких насекомых таких, как водомерки, по всей поверхности водоемов. Лапка этих членистоногих деформирует водную поверхность, тем самым увеличивая ее площадь. В результате этого возникает сила поверхностного натяжения, стремящаяся уменьшить подобное изменение площади. Равнодействующая сила будет всегда направлена исключительно вверх, компенсируя при этом действие тяжести.

Результат действия поверхностного натяжения

Под воздействием поверхностного натяжения небольшие количества жидких сред стремятся принять шарообразную форму, которая будет идеально соответствовать наименьшей величине окружающей среды. Приближение к шаровой конфигурации достигается тем больше, чем слабее начальные силы тяжести, так как у малых капель показатель силы поверхностного натяжения гораздо превосходит влияние тяжести.

Поверхностное натяжение считается одной из важнейших характеристик поверхностей раздела фаз. Оно непосредственно воздействует на формирование мелкодисперсных частиц физических тел и жидкостей при их разделении, а также на слияние элементов или пузырьков в туманах, эмульсиях, пенах, на процессы адгезии.

Замечание 2

Поверхностное натяжение устанавливает форму будущих биологических клеток и их основных частей.

Изменение сил данного физического процесса влияет на фагоцитоз и на процессы альвеолярного дыхания. Благодаря этому явлению пористые вещества могут в течение длительного времени удерживать огромное количество жидкости даже из паров воздуха, Капиллярные явления, предполагающие изменения высоты уровня жидкости в капиллярах по сравнению с уровнем жидкости в более широком сосуде, весьма распространены. Посредством данных процессов обусловлено поднятие воды в почве, по корневой системе растений, движение биологических жидкостей по системе мелких канальцев и сосудов.

На этом уроке пойдет речь о жидкостях и их свойствах. С точки зрения современной физики, жидкости являются наиболее сложным предметом исследований, потому что по сравнению с газами уже нельзя говорить о пренебрежимо малой энергии взаимодействия между молекулами, а по сравнению с твердыми телами нельзя говорить об упорядоченном расположении молекул жидкости (в жидкости отсутствует дальний порядок). Это приводит к тому, что жидкости обладают рядом интереснейших свойств и их проявлений. Об одном таком свойстве и пойдет речь на этом уроке.

Для начала, обсудим особые свойства, которыми обладают молекулы приповерхностного слоя жидкости по сравнению с молекулами, находящимися в объеме.

Рис. 1. Отличие молекул приповерхностного слоя от молекул, находящихся в объеме жидкости

Рассмотрим две молекулы А и Б. Молекула А находится внутри жидкости, молекула Б - на ее поверхности (Рис. 1). Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, или их равнодействующая равна нулю.

Что же происходит с молекулой Б, которая находится у поверхности жидкости? Напомним, что концентрация молекул газа, который находится над жидкостью, значительно меньше, чем концентрация молекул жидкости. Молекула Б с одной стороны окружена молекулами жидкости, а с другой стороны - сильно разреженными молекулами газа. Поскольку со стороны жидкости на нее действует гораздо больше молекул, то равнодействующая всех межмолекулярных сил будет направлена внутрь жидкости.

Таким образом, для того чтобы молекула из глубины жидкости попала в поверхностный слой, нужно совершить работу против не скомпенсированных межмолекулярных сил.

Вспомним, что работа - это изменение потенциальной энергии, взятое со знаком минус.

Значит, молекулы приповерхностного слоя, по сравнению с молекулами внутри жидкости, обладают избыточной потенциальной энергией.

Эта избыточная энергия является составляющей внутренней энергии жидкости и называется поверхностной энергией . Обозначается она, как , и измеряется, как и любая другая энергия, в джоулях.

Очевидно, что чем больше площадь поверхности жидкости, тем больше таких молекул, которые обладают избыточной потенциальной энергией, а значит тем больше поверхностная энергия. Этот факт можно записать в виде следующего соотношения:

,

где - площадь поверхности, а - коэффициент пропорциональности, который мы назовем коэффициентом поверхностного натяжения , этот коэффициент характеризует ту, или иную жидкость. Запишем строгое определение этой величины.

Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) - это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости

Измеряется коэффициент поверхностного натяжения в ньютонах, деленных на метр.

Обсудим, от чего зависит коэффициент поверхностного натяжения жидкости. Для начала, вспомним, что коэффициент поверхностного натяжения характеризует удельную энергию взаимодействия молекул, а значит факторы, изменяющие эту энергию, изменят и коэффициент поверхностного натяжения жидкости.

Итак, коэффициент поверхностного натяжения зависит от:

1. Природы жидкости (у «летучих» жидкостей, таких как эфир, спирт и бензин, поверхностное натяжение меньше, чем у «нелетучих» - воды, ртути и жидких металлов).

2. Температуры (чем выше температура, тем меньше поверхностное натяжение).

3. Наличие поверхностно активных веществ, уменьшающих поверхностное натяжение (ПАВ), например мыла или стирального порошка.

4. Свойства газа, граничащего с жидкостью.

Отметим, что коэффициент поверхностного натяжения не зависит от площади поверхности, так как для одной отдельно взятой приповерхностной молекулы абсолютно неважно, сколько таких же молекул вокруг. Обратите внимание на таблицу, в которой приведены коэффициенты поверхностного натяжения различных веществ, при температуре :

Таблица 1. Коэффициенты поверхностного натяжения жидкостей на границе с воздухом, при

Итак, молекулы приповерхностного слоя обладают избыточной потенциальной энергией по сравнению с молекулами в объеме жидкости. В курсе механики было показано, что любая система стремится к минимуму потенциальной энергии. Например, тело, брошенное с некоторой высоты, будет стремиться упасть вниз. Кроме того, вы чувствуете себя намного комфортнее лёжа, поскольку в этом случае максимально низко расположен центр масс вашего тела. К чему приводит стремление уменьшить свою потенциальную энергию в случае жидкости? Поскольку поверхностная энергия зависит от площади поверхности, значит, любой жидкости энергетически невыгодно иметь большую площадь поверхности. Иными словами, в свободном состоянии жидкость будет стремиться сделать свою поверхность минимальной.

В этом легко убедиться, экспериментируя с мыльной пленкой. Если окунуть в мыльный раствор некий проволочный каркас, то на нем образуется мыльная пленка, при чем пленка приобретет такую форму, чтобы площадь ее поверхности была минимальной (Рис. 2).

Рис. 2. Фигуры из мыльного раствора

Убедиться в существовании сил поверхностного натяжения можно при помощи простого эксперимента. Если к проволочному кольцу в двух местах привязана нить, причем так, чтобы длина нити была несколько больше длины хорды, соединяющей точки крепления нити, и обмакнуть проволочное кольцо в мыльный раствор (Рис. 3а), мыльная пленка затянет всю поверхность кольца и нить будет лежать на мыльной пленке. Если теперь порвать пленку с одной стороны нити, мыльная пленка, оставшаяся с другой стороны нити, сократится и натянет нить (Рис. 3б).

Рис. 3. Эксперимент по обнаружению сил поверхностного натяжения

Почему же так произошло? Дело в том, что оставшийся сверху мыльный раствор, то есть жидкость, стремится сократить площадь своей поверхности. Таким образом, нить вытягивается вверх.

Итак, в существовании силы поверхностного натяжения мы убедились. Теперь научимся ее рассчитывать. Для этого проведем мысленный эксперимент. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна (Рис. 4). Будем растягивать мыльную пленку, действуя на подвижную сторону рамки силой . Таким образом, на перекладину действуют три силы - внешняя сила и две силы поверхностного натяжения , действующие вдоль каждой поверхности пленки. Воспользовавшись вторым законом Ньютона, можем записать, что

Рис. 4. Вычисление силы поверхностного натяжения

Если под действием внешней силы перекладина переместится на расстояние , то эта внешняя сила совершит работу

Естественно, что за счет совершения этой работы площадь поверхности пленки увеличится, а значит, увеличится и поверхностная энергия, которую мы можем определить через коэффициент поверхностного натяжения:

Изменение площади, в свою очередь можно определить следующим образом:

где - длина подвижной части проволочной рамки. Учитывая это, можно записать, что работа внешней силы равна

Приравнивая правые части в (*) и (**), получим выражение для силы поверхностного натяжения:

Таким образом, коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, которая действует на единицу длины линии, ограничивающей поверхность

Итак, мы еще раз убедились в том, что жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной. Можно показать, что при заданном объеме площадь поверхности будет минимальной у шара. Таким образом, если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать сферическую форму. Так, например, будет вести себя вода в невесомости (Рис. 5) или мыльные пузыри (Рис. 6).

Рис. 5. Вода в невесомости

Рис. 6. Мыльные пузыри

Наличием сил поверхностного натяжения также можно объяснить то, почему металлическая иголка «лежит» на поверхности воды (Рис. 7). Иголка, которую аккуратно положили на поверхность, деформирует ее, увеличивая тем самым площадь этой поверхности. Таким образом, возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади. Равнодействующая сил поверхностного натяжения будет направлена вверх, и она скомпенсирует силу тяжести.


Рис. 7. Иголка на поверхности воды

Таким же образом можно объяснить принцип действия пипетки. Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности. Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться (Рис. 8). Когда вы нажимаете на резиновый колпачок пипетки, вы тем самым создаете дополнительное давление, которое помогает силе тяжести, и в результате, капля падает вниз.

Рис. 8. Принцип работы пипетки

Приведем еще один пример из повседневной жизни. Если опустить кисточку для рисования в стакан с водой, то ее волоски распушатся. Если теперь вынуть эту кисточку из воды, то вы заметите, что все волоски прилипли друг к другу. Это связано с тем, что площадь поверхности воды, налипшей на кисточку, в таком случае будет минимальной.

И еще один пример. Если вы захотите построить замок из сухого песка, это у вас вряд ли получится, поскольку песок будет рассыпаться под действием силы тяжести. Однако если вы намочите песок, то он будет сохранять свою форму благодаря силам поверхностного натяжения воды между песчинками.

Наконец, отметим, что теория поверхностного натяжения помогает найти красивые и простые аналогии при решении более сложных физических задач. Например, когда нужно построить лёгкую и в то же время прочную конструкцию, на помощь приходит физика того, что происходит в мыльных пузырях. А построить первую адекватную модель атомного ядра удалось, уподобив это атомное ядро капле заряженной жидкости.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. «Физика 10». - М.: Просвещение, 2008.
  2. Я. Е. Гегузин «Пузыри», Библиотека Квант. - М.: Наука, 1985.
  3. Б. М. Яворский, А. А. Пинский «Основы физики» т. 1.
  4. Г. С. Ландсберг «Элементарный учебник физики» т. 1.
  1. Nkj.ru ().
  2. Youtube.com ().
  3. Youtube.com ().
  4. Youtube.com ().

Домашнее задание

  1. Решив задачи к данному уроку, вы сможете подготовиться к вопросам 7,8,9 ГИА и вопросам А8, А9, A10 ЕГЭ.
  2. Гельфгат И.М., Ненашев И.Ю. «Физика. Сборник задач 10 класс» 5.34, 5.43, 5.44, 5.47 ()
  3. Опираясь на задачу 5.47, определите коэффициент поверхностного натяжения воды и мыльного раствора.

Список вопросов-ответов

Вопрос: Почему поверхностное натяжение меняется с изменением температуры?

Ответ: При увеличении температуры, молекулы жидкости начинают двигаться быстрее, и следовательно, молекулы легче преодолевают потенциальные силы притяжения. Что и приводит к уменьшению сил поверхностного натяжения, являющихся потенциальными силами, которыми связываются молекулы приповерхностного слоя жидкости.

Вопрос: Зависит ли коэффициент поверхностного натяжения от плотности жидкости?

Ответ: Да, зависит, поскольку от плотности жидкости зависит энергия молекул приповерхностного слоя жидкости.

Вопрос: Какие существуют способы определения коэффициента поверхностного натяжения жидкости?

Ответ: В школьном курсе изучаютдва способа определениякоэффициента поверхностного натяжения жидкости. Первый - это метод отрыва проволочки, его принцип описан в задаче 5.44 из домашнего задания, второй - метод счета капель, описанный в задаче 5.47.

Вопрос: Почему через некоторое время мыльные пузыри разрушаются?

Ответ: Дело в том, что через некоторое время, под действием силы тяжести пузырь становится толще внизу, чем вверху, и затем под влиянием испарения разрушается в какой-либо точке. Это приводит к тому, что весь пузырь, подобно воздушному шарику, схлопывается под действием не скомпенсированных сил поверхностного натяжения.

Жи́дкость вещество, находящееся в жидком агрегатном состоянии, занимающем промежуточное положение между твёрдым и газообразным состояниями. Основным свойством жидкости, отличающим её от веществ, находящихся в других агрегатных состояниях, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Общая информация о жидком состоянии

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое.

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние–стекло), выше– в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения– это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

Физические свойства жидкостей

1 ).Текучесть

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

2).Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от до приблизительно .

3).Вязкость

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой– то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую– энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

4).Смешиваемость

Смешиваемость– способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

5).Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую– газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела– силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

6).Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространяться упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания– вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость– внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

Строение жидкостей


Экспериментальные исследования жидкого состояния вещества, основанные на наблюдении дифракции рентгеновских лучей и потоков нейтронов при прохождении их через жидкие среды, обнаружили наличие в жидкости ближнего порядка , т.е. наличие некоторой упорядоченности в расположении частиц лишь на малом расстоянии от какой-либо выделенной позиции (рис. 140).

Взаимное расположение соседних частиц в жидкостях сходно с упорядоченным расположением соседних частиц в кристаллах. Однако, эта упорядоченность в жидкостях наблюдается лишь внутри малых объёмов. При расстояниях: от некоторой выбранной «центральной» молекулы упорядоченность нарушается ( –эффективный диаметр молекулы). Подобная упорядоченность в расположении частиц в жидкостях и называется ближним порядком.

Из – за отсутствия дальнего порядка жидкости, за немногим исключением, не обнаруживают анизотропии, характерной для кристаллов. По этой причине структуру жидкости иногда называют квазикристаллической или кристаллоподобной.

Впервые идея о близости некоторых свойств жидкостей (особенно расплавов металлов) и кристаллических твердых тел была высказана и затем развивалась в работах советского физика Я.И.Френкеля еще 1930–1940-х. Согласно взглядам Френкеля, получившим теперь всеобщее признание, тепловое движение атомов и молекул в жидкости состоит из нерегулярных колебаний со средней частотой, близкой к частоте колебаний атомов в кристаллических телах. Центр колебаний определяется при этом полем сил соседних частиц и смещается вместе со смещениями этих частиц.

Упрощенно можно представить такое тепловое движение как наложение друг на друга сравнительно редких перескоков частиц из одних временных положений равновесия в другие и тепловых колебаний в промежутках между скачками. Среднее время «оседлого» пребывания молекулы жидкости вблизи некотрого положения равновесия называется временем релаксации. По истечеии времени молекула меняет место равновесия, скачком перемещаясь в новое положение, отстоящее от предыдущего на расстояние порядка размеров самих молекул. Таким образом, молекула медленно перемещается внутри жидкости. С ростом температуры время уменьшается, подвиждность молекул возрасчтает, что влечёт за собой уменьшенине вязкости жидкостей (возрастает текучесть). По образному выражению Я.И.Френкеля, молекулы странствуют по всему объему жидкости, ведя кочевой образ жизни, при котором кратковременные переезды сменяются относительно длинными периодами оседлой жизни.

Аморфные твёрдые тела (стекло, смолы, битум и т.д.) можно рассматривать как переохлаждённые жидкости, частицы которых из-за сильно возросшей вязкости имеют ограниченную подвижность.

Из-за малой упорядоченности жидкого состояния теория жидкости оказывается менее развитой, чем теория газов и кристаллических твердых тел. Пока нет полной теории жидкости.

Особый тип жидкостей – это некоторые органические соединения, состоящие из молекул удлиненной или дискообразной формы, или так называемые жидкие кристаллы. Взаимодействие между молекулами в таких жидкостях стремится выстроить длинные оси молекул в определенном порядке. При высоких температурах тепловое движение препятствует этому, и вещество представляет собой обычную жидкость. При температурах ниже критической в жидкости появляется выделенное направление, возникает дальний ориентационный порядок. Сохраняя основные черты жидкости, например, текучесть, жидкие кристаллы обладают характерными свойствами твердых кристаллов – анизотропией магнитных, электрических и оптических свойств. Эти их свойства (наряду с текучестью) находят многочисленные технические применения, например, в электронных часах, калькуляторах, мобильных телефонах, а также в мониторах персональных компьютеров, телевизорах, в качестве индикаторов, табло и экранов для отображения цифровой, буквенной и аналоговой информации.

Поверхностное натяжение

Наиболее интересной особенностью жидкостей является наличие свободной поверхности . С поверхностью жидкости связана свободная энергия , пропорциональная площади свободной поверхности жидкости: . Так как свободная энергия изолированной системы стремится к минимуму, то жидкость (в отсутствие внешних полей) стремится принять форму, имеющую минимальную площадь поверхности. Таким образом, задача о форме жидкости сводится к изопериметрической задаче при заданных дополнительных условиях (начальное распределение, объём ит.п.). Свободная капля принимает форму шара, однако при более сложных условиях задача о форме поверхности жидкости становится исключительно сложной.

Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы (рис. 141).

Но все молекулы, в том числе и молекулы пограничного слоя, должны находиться в состоянии равновесия. Это равновесие достигается за счет некоторого уменьшения расстояния между молекулами поверхностного слоя и их ближайшими соседями внутри жидкости. При уменьшении расстояния между молекулами возникают силы отталкивания. Молекулы поверхностного слоя упакованы несколько более плотно, а поэтому они обладают дополнительным запасом потенциальной энергии по сравнению с внутренними молекулами. Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией , равной свободной энергии . .Таким образом, потенциальная энергия поверхности жидкости пропорциональна ее площади: .

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии, т.е. свободная поверхность жидкости стремится сократить свою площадь. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называютсясилами поверхностного натяжения .

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В окружающем нас мире наряду с тяготением, упругостью и трением действует еще одна сила, на которую мы обычно не обращаем внимание. Эта сила действует вдоль касательной к поверхностям всех жидкостей. Силу, которая действует вдоль поверхности жидкости перпендикулярно линии, ограничивающей эту поверхность, стремится сократить её до минимума, называют силой поверхностного натяжения . Она сравнительно мала, ее действие никогда не вызывает мощных эффектов. Тем не менее, мы не можем налить воду в стакан, вообще ничего не можем проделать с какой-либо жидкостью без того, чтобы не привести в действие силы поверхностного натяжения. К эффектам, называемым поверхностным натяжением, мы настолько привыкли, что не замечаем их. Удивительно разнообразны проявления поверхностного натяжения жидкости в природе и технике. В природе и в нашей жизни они играют немаловажную роль. Без них мы не могли бы писать гелиевыми ручками, картриджив принтерах сразу же ставили бы большую кляксу, опорожнив весь свой резервуар. Нельзя было бы намылить руки - пена не образовалась бы. Слабый дождик промочил бы нас насквозь, а радугу нельзя было бы видеть ни при какой погоде. Поверхностное натяжение собирает воду в капли и благодаря поверхностному натяжению можно выдуть мыльный пузырь. Используя правило «Вовремя удивляться» бельгийского профессора Плато для исследователей, рассмотрим в работе необычные опыты.

Цель работы: экспериментально проверить проявления поверхностного натяжения жидкости, определить коэффициент поверхностного натяжения жидкостей методом отрыва капель

    Изучить учебную, научно-популярную литературу, использовать материалы в сети «Интернет» по теме «Поверхностное натяжение»;

    проделать опыты, доказывающие, что собственная форма жидкости - шар;

    провести эксперименты с уменьшением и увеличением поверхностного натяжения;

    сконструировать и собрать экспериментальную установку, с помощью которой определить коэффициент поверхностного натяжения некоторых жидкостей методом отрыва капель.

    обработать полученные данные и сделать вывод.

Объект исследования: жидкости.

Основная часть. Поверхностное натяжение

Рис 1. Г. Галилей

Ногочисленные наблюдения и опыты показывают, что жидкость может принимать такую форму, при которой ее свободная поверхность имеет наименьшую площадь. В своем стремлении сократиться поверхностная пленка придавала бы жидкости сферическую форму, если бы не притяжение к Земле. Чем меньше капля, тем большую роль играют силы поверхностного натяжения. Поэтому маленькие капельки росы на листьях деревьев, на траве близки по форме к шару, при свободном падении дождевые капли почти строго шарообразны. Стремление жидкости сокращаться до возможного минимума, можно наблюдать на многих явлениях, которые кажутся удивительными. Еще Галилей задумывался над вопросом: почему капли росы, которые он видел по утрам на листьях капусты, принимают шарообразную форму? Утверждение, что жидкость не имеет своей формы, оказывается не совсем точным. Собственная форма жидкости - шар, как наиболее ёмкая форма. Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. 1

Рис 2. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 - вода; 2 - лед

А как можно объяснить самопроизвольное сокращение поверхности жидкости? Молекулы на поверхности и в глубине жидкости находятся в разных условиях. На каждую молекулу внутри жидкости действуют силы притяжения со стороны соседних молекул, окружающих ее со всех сторон. Результирующая этих сил равна нулю. Над поверхностью жидкости находится пар, плотность которого во много раз меньше плотности жидкости, и взаимодействием молекул пара с молекулами жидкости можно пренебречь. Молекулы, которые находятся на поверхности жидкости, притягиваются только молекулами, находящимися внутри жидкости. Под действием этих сил молекулы поверхностного слоя втягиваются внутрь, число молекул на поверхности уменьшается, площадь поверхности сокращается. Но не все молекулы могут с поверхности уйти внутрь жидкости, этому препятствуют силы отталкивания, возникающие при уменьшении расстояний между молекулами. При определенных расстояниях между молекулами, втягиваемыми внутрь, и молекулами, находящимися под поверхностью, силы взаимодействия становятся равными нулю, процесс сокращения поверхности прекращается. На поверхности остается такое число молекул, при котором ее площадь оказывается минимальной для данного объема жидкости. Так как жидкость текуча, она принимает такую форму, при которой число молекул на поверхности минимально, а минимальную поверхность при данном объеме имеет шар, то есть капля жидкости принимает форму, близкую шаровой.Проще всего уловить характер сил поверхностного натяжения, наблюдая образование капли. Всмотритесь внимательно, как постепенно растет капля, образуется сужение - шейка, - и капля отрывается. Не нужно много фантазии, чтобы представить себе, что вода как бы заключена в эластичный мешочек, и этот мешочек разрывается, когда вес превышает его прочность. В действительности, конечно, ничего кроме воды, в капле нет, но сам поверхностный слой воды ведёт себя, как растянутая эластичная пленка. Такое же впечатление производит пленка мыльного пузыря.

Опыт №1

Тремление жидкости к минимуму потенциальной энергии можно наблюдать с помощью мыльных пузырей. Мыльная пленка представляет собой двойной поверхностный слой. Если выдуть мыльный пузырь, а потом прекратить надувание, то он станет уменьшаться в объёме, выжимая из себя струю воздуха.

Поверхностное натяжение - явление молекулярного давления на жидкость, вызываемое притяжением молекул поверхностного слоя к молекулам внутри жидкости 5

Опыт Плато (1849г.)

Рис. 4. Ж.Плато

Оводом, побудившим бельгийского профессора к опытам, был случай. Нечаянно он налил в смесь спирта и воды небольшое количество масла, и оно приняло форму шара. Размышляя над этим фактом, Плато наметил ряд опытов, которые впоследствии блестяще были выполненными его друзьями и учениками. В своем дневнике он написал для исследователей правило: «Вовремя удивляться». Я решила исследовать опыт Плато, но в другом варианте: использовать в опыте подсолнечное масло и подкрашенную марганцовую воду.

Опыт, доказывающий, что однородная жидкость принимает форму с минимальной свободной поверхностью

Вариант опыта Плато №2

1) В мензурку налили подсолнечное масло.

2) Глазной пипеткой капнули в подсолнечное масло каплю подкрашенной марганцовой воды диаметром приблизительно 5мм.

) Наблюдали шарики воды разного размера, медленно падающие на дно и принимающие овальную приплюснутую форму (Фото 2).

5) Наблюдали, как капля принимает правильную форму шара (Фото 2).

Вывод : Жидкость, притягивая молекулы поверхностного слоя, сжимает саму себя. Овальная приплюснутая форма объясняется тем, что вес капли, которая не смешивается с маслом, больше выталкивающей силы. Правильная форма шара объясняется тем, что капля плавает внутри масла: вес капли уравновешивается выталкивающей силой.

При свободном падении, в состоянии невесомости капли дождя практически имеют форму шара. В космическом корабле шарообразную форму принимает и достаточно большая масса жидкости.

Коэффициент поверхностного натяжения

В отсутствии внешней силы вдоль поверхности жидкости действует сила поверхностного натяжения, которая сокращает до минимума площадь поверхности пленки. Сила поверхностного натяжения - сила, направленная по касательной к поверхности жидкости, перпендикулярно участку контура, ограничивающего поверхность, в сторону ее сокращения.

Ơ - коэффициент поверхностного натяжения - это отношение модуля F силы поверхностного натяжения, действующей на границу поверхностного слоя ℓ, к этой длине есть величина постоянная, не зависящая от длины ℓ. Коэффициент поверхностного натяжения зависит от природы граничащих сред и от температуры. Его выражают в ньютонах на метр (Н / м).

Опыты с уменьшением и увеличением

Фото 3

оверхностного натяжения

Опыт №3

    Прикоснулись к центру поверхности воды кусочком мыла.

    Кусочки пенопласта начинают двигаться от центра к краям сосуда (Фото 3).

    Капали в центр сосуда бензином, спиртом, моющим средством «Fairy».

Вывод: Поверхностное натяжение данных веществ меньше, чем у воды.

Эти вещества используются для удаления грязи, жирных пятен, сажи, т.е. не растворимых в воде веществ.Из-за достаточно высокого поверхностного натяжения вода сама по себе не обладает очень хорошим чистящим действием. Например, вступая в контакт с пятном, молекулы воды притягиваются друг к другу больше, чем к частицам нерастворимой грязи.Мыло и синтетические моющие средства (СМС) содержат вещества, уменьшающие поверхностное натяжение воды. Первое мыло, самое простое моющее средство, было получено на Ближнем Востоке более 5000 лет назад. Поначалу оно использовалось, главным образом, для стирки и обработки язв и ран. И только в 1 веке н.э. человек стал мыться с мылом.

В начале 1-го века мыло появилось на свет.

От грязи спасло человека и стал он чистым с юных лет.

Я говорю вам про мыло, что вскоре породило: шампунь, гель, порошок.

Стал чистым мир, как хорошо!

Рис 5. Ф. Гюнтер

Моющими средствами называются натуральные и синтетические вещества с очищающим действием, в особенности мыло и стиральные порошки, применяемые в быту, промышленности и сфере обслуживания. Мыло получают в результате химического взаимодействия жира и щелочи. Скорее всего, оно было открыто по чистой случайности, когда над костром жарили мясо, и жир стекал на золу, обладающую щелочными свойствами. Производство мыла имеет давнюю историю, а вот первое синтетическое моющее средство (СМС) появилось в 1916г., его изобрел немецкий химик Фриц Гюнтер для промышленных целей. Бытовые СМС, более или менее безвредные для рук, стали выпускаться 1933г. С тех пор разработан целый ряд синтетических моющих средств (СМС) узкого назначения, а их производство стало важной отраслью химической промышленности.

Именно из-за поверхностного натяжения вода сама по себе не обладает достаточным чистящим действием. Вступая в контакт с пятном, молекулы воды притягиваются друг к другу, вместо того чтобы захватывать частицы грязи, другими словами они не смачивают грязь.

Мыло и синтетические моющие средства содержат вещества, повышающие смачивающие свойства воды за счет уменьшения силы поверхностного натяжения. Эти вещества называются поверхностно-активными (ПАВ), поскольку действуют на поверхности жидкости.

Сейчас производство СМС стало важной отраслью химической промышленности. Эти вещества называют поверхностно-активным веществом (ПАВ), поскольку действуют на поверхности жидкости. Молекулы ПАВ можно представить в виде головастиков. Головами они «цепляются» за воду, а «хвостами» за жир. Когда ПАВ смешивают с водой, их молекулы на поверхности обращены «головами» вниз, а «хвостами» наружу. Раздробив таким образом поверхность воды, эти молекулы значительно уменьшают эффект поверхностного натяжения, тем самым помогая воде проникнуть в ткань. Этими же «хвостиками» молекулы ПАВ (Рис 6) захватывают попадающиеся им молекулы жира. 2

Опыт №4

1.Налили в блюдце молоко так, чтобы оно закрыло дно (Фото 4)

2. Капнули на поверхность молока 2 капля зеленки

3. Наблюдали, как зеленка «увлекается» от центра к краям. Две капли зеленки покрывают большую часть поверхности молока! (Фото 5)

Вывод: поверхностное натяжение зеленки, намного меньше, чем молока.

4. На поверхность зеленки капнули жидкость для мытья посуды «Fairy», мы увидели, как эта жидкость растеклась по всей поверхности.(Фото 6)

Вывод: поверхностное натяжение моющего средства меньше, чем зеленки.

Опыт№5

    В широкий стеклянный сосуд налили воду.

    На поверхность бросили кусочки пенопласта.

    Прикоснулись к центру поверхности воды кусочком сахара.

    Усочки пенопласта начинают двигаться от краев сосуда к центру (Фото 7).

Вывод: поверхностное натяжение водного раствора сахара больше, чем чистой воды.

Опыт№6

Удаление с поверхности ткани жирового пятна

Смочили бензином ватку и этой ваткой смочили края пятна (а не само пятно). Бензин уменьшает поверхностное натяжение, поэтому жир собирается к центру пятна и оттуда его можно удалить, этой же ваткой если же смачивать, само пятно, то оно может увеличиться в размерах вследствие уменьшения поверхностного натяжения.

Для экспериментального определения значения поверхностного натяжения жидкости можно использовать процесс образования и отрыва капель, вытекающих из капельницы.

Краткая теория методаотрыва капель

Малый объем жидкости сам по себе принимает форму, близкую к шару, так как благодаря малой массе жидкости мала и сила тяжести, действующая на нее. Этим объясняется шарообразная форма небольших капель жидкости. На рис.1 приведены фотографии, на которых показаны различные стадии процесса образования и отрыва капли. Фотография получена с помощью скоростной киносъемки, капля растет медленно, можно считать, что в каждый момент времени она находится в равновесии. Поверхностное натяжение вызывает сокращение поверхности капли, оно стремится придать капле сферическую форму. Сила тяжести располагает центр тяжести капли как можно ниже. В результате капля оказывается вытянутой (рис.7а).

Рис. 7. а б в г

Процесс образования и отрыва капель

Чем больше капля, тем большую роль играет потенциальная энергия силы тяжести. Основная масса по мере роста капли собирается внизу и у капли образуется шейка (рис.7б). Сила поверхностного натяжения направлена вертикально по касательной к шейке и она уравновешивает силу тяжести, действующую на каплю. Теперь достаточно капле совсем немного увеличиться и силы поверхностного натяжения уже не уравновешивают силу тяжести. Шейка капли быстро сужается (рис.7в) и в результате капля отрывается (рис.7г).

Метод измерения коэффициента поверхностного натяжения некоторых жидкостей основывается на взвешивании капель. В случае медленного вытекания жидкости из малого отверстия размер образующихся капель зависит от плотности жидкости, коэффициента поверхностного натяжения, размера и формы отверстия, а также от скорости истечения. При медленном вытекании смачивающей жидкости из вертикальной цилиндрической трубки образующаяся капля имеет форму, показанную на рисунке 8. Радиус r шейки капли связан с наружным радиусом трубки R соотношением r = kR (1)

где k - коэффициент, зависящий от размеров трубки и скорости вытекания.

Момент отрыва вес капли должен быть равен равнодействующей сил поверхностного натяжения, действующих по длине, равной протяженности контура шейки в самой ее узкой части. Таким образом, можно записать

Mg = 2πrơ (2)

Подставляя величину радиуса шейки r из равенства (1) и решая его, получим

Ơ =mg/2πkR (3)

Для определения массы капли, некоторое число n капель взвешивают в стакане известного веса. Если масса стаканчика без капель и с каплями будет соответственно М 0 и М, то масса одной капли

Подставляя последнее выражение в формулу (3) и вводя вместо радиуса трубки ее диаметр d, получим расчетную формулу

ơ = ((M-M0)g)/πkdn 3 (4)

Исследовательская работа «Определение коэффициента поверхностного натяжения некоторых жидкостей методом отрыва капель»

Цель исследования : определить коэффициент поверхностного натяжения жидкости методом отрыва капель некоторых жидкостей. Приборы : установка для измерения коэффициента поверхностного натяжения, весы, разновес, стаканчик, штангенциркуль, секундомер. Материалы : моющие средства: «Fairy», «Aos», молоко, спирт, бензин, растворы порошков: «Миф», «Persil», шампуни «Fruttis» , «Pantene », «Schauma» и «Fruttis» , гели для душа «Sensen », «Монпансье» и «Discover ».

Описание прибора .

Для определения коэффициента поверхностного натяжения собрали установку, состоящую из штатива, на котором установили бюретку с исследуемой жидкостью. На конце бюретки укрепили наконечник-трубку, на конце которой образуется капля. Взвешивание капель производили в специальном стаканчике.

Ход исследования

    С помощью штангенциркуля измерили диаметр наконечника-трубки три раза и вычислили среднее значение d.

    Взвесили на весах чистый сухой стаканчик (М 0).

    С помощью краника бюретки добились скорости вытекания капель

15 капель в минуту.

    Отлили из бюретки в стаканчик 60 капель жидкости, считая точно количество отлитых капель.

    Взвесили стаканчик с жидкостью. (М)

    Подставили полученные значения в формулу ơ = ((M-M0)g)/πkdn

    Вычислили коэффициент поверхностного натяжения.

    Провели опыт три раза

    Вычислили среднее значение коэффициента поверхностного натяжения.

Коэффициент поверхностного натяжения в системе СИ измеряется в Н/м.

Таблица №1

Результаты определения коэффициента поверхностного натяжения (Н/м)

Жидкость

Коэффициент поверхностного натяжения

Измеренное

Табличное

Спирт этиловый

Молоко (2,5)

Молоко (коровье домашнее)

Раствор порошка «Миф»

Раствор порошка «Persil»

Моющее средство «Fairy»

Моющее средство «Aos»

Вывод: Из исследованных кухонных моющих средств, при всех остальных одинаковых параметрах, влияющих на качество «отмывания», лучше использовать средство «Fairy ». Из исследованных стиральных порошков «Миф », т.к. именно их растворы обладают наименьшим поверхностным натяжением. Следовательно, первое средство («Fairy ») лучше помогает смывать нерастворимые в воде жиры с посуды, являясь эмульгатором - средством, облегчающим получение эмульсий (взвесей мельчайших частиц жидкого вещества в воде). Второе («Миф ») лучше отстирывает бельё, проникая в поры между волокнами тканей. Заметим, что при использовании кухонных моющих средств, мы заставляем вещество (в частности жир) хотя бы на некоторое время растворится в воде, т.к. происходит «дробление» его на мельчайшие частицы. За это время рекомендуется смыть нанесенное моющее средство струей чистой воды, а не ополаскивать посуду через какое-то время в ёмкости. Кроме того исследовали поверхностное натяжение шампуней и гелей для душа. Из-за достаточно высокой вязкости этих жидкостей сложно точно определить коэффициент поверхностного натяжения их, но зато можно сравнить. Были исследованы (методом отрыва капель) шампуни «Pantene », «Schauma» и «Fruttis» , а также гели для душа «Sensen », «Монпансье» и «Discover ».

Вывод:

    Поверхностное натяжение уменьшается в шампунях на ряду «Fruttis» - «Schauma» - «Pantene», в гелях - в ряду «Монпансье» - «Discover» - «Senses».

    Поверхностное натяжение шампуней меньше поверхностного натяжения гелей (Например «Pantene » < «Senses » на 65 мН/м), что оправдывает их назначение: шампуни - для мытья волос, гели - для мытья тела.

    При всех остальных одинаковых характеристиках, влияющих на качество мытья, из исследованных шампуней лучше использовать «Pantene» (Рис. 9), из исследованных гелей для душа - «Senses»(Рис.10).

Метод отрыва капель, не будучи очень точным, однако, используется в медицинской практике. Этим методом определяют в диагностических целях поверхностное натяжение спинномозговой жидкости, желчи и т.д.

Заключение

1. Получены экспериментальные подтверждения теоретических выводов, доказывающие, что однородная жидкость принимает форму с минимальной свободной поверхностью

2. Проведены эксперименты с уменьшением и увеличением поверхностного натяжения, результаты которых доказали, чтомыло и синтетические моющие средства содержат вещества, повышающие смачивающие свойства воды за счет уменьшения силы поверхностного натяжения.

3. Для определения коэффициента поверхностного натяжения жидкостей

а) изучена краткая теория метода отрыва капель;

б) сконструирована и собрана экспериментальная установка;

в) вычислены средние значения коэффициента поверхностного натяжения различных жидкостей, сделаны выводы.

4. Результаты экспериментов и исследования представлены в виде таблицы и фотографий.

Работа над проектом позволила мне приобрести более широкие знания по разделу физики «Поверхностное натяжение».

Мне хочется закончить свой проект словами великого ученого физика

А. Эйнштейна :

«Мне достаточно испытать ощущение вечной тайны жизни, осознавать и интуитивно постигать чудесную структуру всего сущего и активно бороться, чтобы схватить пусть даже самую малую крупинку разума, который проявляется в Природе»

Список использованных источников и литературы

    http://www.physics.ru/

    http://greenfuture.ru/

    http://www.agym.spbu.ru/

    Буховцев Б.Б., Климонтович Ю. Л., Мякишев Г.Я., Физика, учебник для 9 класса средней школы - 4-е издание - М.: Просвещение, 1988 г. - 271 с.

    Касьянов В.А., Физика, 10 класс, учебник для общеобразовательных учебных заведений, М.: Дрофа, 2001г. - 410 с.

    Пинский А.А. Физика: учебник. Пособие для 10 классов с углубленным изучением физики. М.: Просвещение, 1993г. - 416 с.

    Юфанова И.Л. Занимательные вечера по физике в средней школе: книга для учителя. - М.: Просвещение, 1990г. -215с

    Чуянов В.Я., Энциклопедический словарь юного физика, М.: Педагогика, 1984г. - 350 с.

1 1 http://www.physics.ru/

2 http://greenfuture.ru

На этом уроке пойдет речь о жидкостях и их свойствах. С точки зрения современной физики, жидкости являются наиболее сложным предметом исследований, потому что по сравнению с газами уже нельзя говорить о пренебрежимо малой энергии взаимодействия между молекулами, а по сравнению с твердыми телами нельзя говорить об упорядоченном расположении молекул жидкости (в жидкости отсутствует дальний порядок). Это приводит к тому, что жидкости обладают рядом интереснейших свойств и их проявлений. Об одном таком свойстве и пойдет речь на этом уроке.

Для начала, обсудим особые свойства, которыми обладают молекулы приповерхностного слоя жидкости по сравнению с молекулами, находящимися в объеме.

Рис. 1. Отличие молекул приповерхностного слоя от молекул, находящихся в объеме жидкости

Рассмотрим две молекулы А и Б. Молекула А находится внутри жидкости, молекула Б - на ее поверхности (Рис. 1). Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, или их равнодействующая равна нулю.

Что же происходит с молекулой Б, которая находится у поверхности жидкости? Напомним, что концентрация молекул газа, который находится над жидкостью, значительно меньше, чем концентрация молекул жидкости. Молекула Б с одной стороны окружена молекулами жидкости, а с другой стороны - сильно разреженными молекулами газа. Поскольку со стороны жидкости на нее действует гораздо больше молекул, то равнодействующая всех межмолекулярных сил будет направлена внутрь жидкости.

Таким образом, для того чтобы молекула из глубины жидкости попала в поверхностный слой, нужно совершить работу против не скомпенсированных межмолекулярных сил.

Вспомним, что работа - это изменение потенциальной энергии, взятое со знаком минус.

Значит, молекулы приповерхностного слоя, по сравнению с молекулами внутри жидкости, обладают избыточной потенциальной энергией.

Эта избыточная энергия является составляющей внутренней энергии жидкости и называется поверхностной энергией . Обозначается она, как , и измеряется, как и любая другая энергия, в джоулях.

Очевидно, что чем больше площадь поверхности жидкости, тем больше таких молекул, которые обладают избыточной потенциальной энергией, а значит тем больше поверхностная энергия. Этот факт можно записать в виде следующего соотношения:

,

где - площадь поверхности, а - коэффициент пропорциональности, который мы назовем коэффициентом поверхностного натяжения , этот коэффициент характеризует ту, или иную жидкость. Запишем строгое определение этой величины.

Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) - это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости

Измеряется коэффициент поверхностного натяжения в ньютонах, деленных на метр.

Обсудим, от чего зависит коэффициент поверхностного натяжения жидкости. Для начала, вспомним, что коэффициент поверхностного натяжения характеризует удельную энергию взаимодействия молекул, а значит факторы, изменяющие эту энергию, изменят и коэффициент поверхностного натяжения жидкости.

Итак, коэффициент поверхностного натяжения зависит от:

1. Природы жидкости (у «летучих» жидкостей, таких как эфир, спирт и бензин, поверхностное натяжение меньше, чем у «нелетучих» - воды, ртути и жидких металлов).

2. Температуры (чем выше температура, тем меньше поверхностное натяжение).

3. Наличие поверхностно активных веществ, уменьшающих поверхностное натяжение (ПАВ), например мыла или стирального порошка.

4. Свойства газа, граничащего с жидкостью.

Отметим, что коэффициент поверхностного натяжения не зависит от площади поверхности, так как для одной отдельно взятой приповерхностной молекулы абсолютно неважно, сколько таких же молекул вокруг. Обратите внимание на таблицу, в которой приведены коэффициенты поверхностного натяжения различных веществ, при температуре :

Таблица 1. Коэффициенты поверхностного натяжения жидкостей на границе с воздухом, при

Итак, молекулы приповерхностного слоя обладают избыточной потенциальной энергией по сравнению с молекулами в объеме жидкости. В курсе механики было показано, что любая система стремится к минимуму потенциальной энергии. Например, тело, брошенное с некоторой высоты, будет стремиться упасть вниз. Кроме того, вы чувствуете себя намного комфортнее лёжа, поскольку в этом случае максимально низко расположен центр масс вашего тела. К чему приводит стремление уменьшить свою потенциальную энергию в случае жидкости? Поскольку поверхностная энергия зависит от площади поверхности, значит, любой жидкости энергетически невыгодно иметь большую площадь поверхности. Иными словами, в свободном состоянии жидкость будет стремиться сделать свою поверхность минимальной.

В этом легко убедиться, экспериментируя с мыльной пленкой. Если окунуть в мыльный раствор некий проволочный каркас, то на нем образуется мыльная пленка, при чем пленка приобретет такую форму, чтобы площадь ее поверхности была минимальной (Рис. 2).

Рис. 2. Фигуры из мыльного раствора

Убедиться в существовании сил поверхностного натяжения можно при помощи простого эксперимента. Если к проволочному кольцу в двух местах привязана нить, причем так, чтобы длина нити была несколько больше длины хорды, соединяющей точки крепления нити, и обмакнуть проволочное кольцо в мыльный раствор (Рис. 3а), мыльная пленка затянет всю поверхность кольца и нить будет лежать на мыльной пленке. Если теперь порвать пленку с одной стороны нити, мыльная пленка, оставшаяся с другой стороны нити, сократится и натянет нить (Рис. 3б).

Рис. 3. Эксперимент по обнаружению сил поверхностного натяжения

Почему же так произошло? Дело в том, что оставшийся сверху мыльный раствор, то есть жидкость, стремится сократить площадь своей поверхности. Таким образом, нить вытягивается вверх.

Итак, в существовании силы поверхностного натяжения мы убедились. Теперь научимся ее рассчитывать. Для этого проведем мысленный эксперимент. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна (Рис. 4). Будем растягивать мыльную пленку, действуя на подвижную сторону рамки силой . Таким образом, на перекладину действуют три силы - внешняя сила и две силы поверхностного натяжения , действующие вдоль каждой поверхности пленки. Воспользовавшись вторым законом Ньютона, можем записать, что

Рис. 4. Вычисление силы поверхностного натяжения

Если под действием внешней силы перекладина переместится на расстояние , то эта внешняя сила совершит работу

Естественно, что за счет совершения этой работы площадь поверхности пленки увеличится, а значит, увеличится и поверхностная энергия, которую мы можем определить через коэффициент поверхностного натяжения:

Изменение площади, в свою очередь можно определить следующим образом:

где - длина подвижной части проволочной рамки. Учитывая это, можно записать, что работа внешней силы равна

Приравнивая правые части в (*) и (**), получим выражение для силы поверхностного натяжения:

Таким образом, коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, которая действует на единицу длины линии, ограничивающей поверхность

Итак, мы еще раз убедились в том, что жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной. Можно показать, что при заданном объеме площадь поверхности будет минимальной у шара. Таким образом, если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать сферическую форму. Так, например, будет вести себя вода в невесомости (Рис. 5) или мыльные пузыри (Рис. 6).

Рис. 5. Вода в невесомости

Рис. 6. Мыльные пузыри

Наличием сил поверхностного натяжения также можно объяснить то, почему металлическая иголка «лежит» на поверхности воды (Рис. 7). Иголка, которую аккуратно положили на поверхность, деформирует ее, увеличивая тем самым площадь этой поверхности. Таким образом, возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади. Равнодействующая сил поверхностного натяжения будет направлена вверх, и она скомпенсирует силу тяжести.


Рис. 7. Иголка на поверхности воды

Таким же образом можно объяснить принцип действия пипетки. Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности. Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться (Рис. 8). Когда вы нажимаете на резиновый колпачок пипетки, вы тем самым создаете дополнительное давление, которое помогает силе тяжести, и в результате, капля падает вниз.

Рис. 8. Принцип работы пипетки

Приведем еще один пример из повседневной жизни. Если опустить кисточку для рисования в стакан с водой, то ее волоски распушатся. Если теперь вынуть эту кисточку из воды, то вы заметите, что все волоски прилипли друг к другу. Это связано с тем, что площадь поверхности воды, налипшей на кисточку, в таком случае будет минимальной.

И еще один пример. Если вы захотите построить замок из сухого песка, это у вас вряд ли получится, поскольку песок будет рассыпаться под действием силы тяжести. Однако если вы намочите песок, то он будет сохранять свою форму благодаря силам поверхностного натяжения воды между песчинками.

Наконец, отметим, что теория поверхностного натяжения помогает найти красивые и простые аналогии при решении более сложных физических задач. Например, когда нужно построить лёгкую и в то же время прочную конструкцию, на помощь приходит физика того, что происходит в мыльных пузырях. А построить первую адекватную модель атомного ядра удалось, уподобив это атомное ядро капле заряженной жидкости.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. «Физика 10». - М.: Просвещение, 2008.
  2. Я. Е. Гегузин «Пузыри», Библиотека Квант. - М.: Наука, 1985.
  3. Б. М. Яворский, А. А. Пинский «Основы физики» т. 1.
  4. Г. С. Ландсберг «Элементарный учебник физики» т. 1.
  1. Nkj.ru ().
  2. Youtube.com ().
  3. Youtube.com ().
  4. Youtube.com ().

Домашнее задание

  1. Решив задачи к данному уроку, вы сможете подготовиться к вопросам 7,8,9 ГИА и вопросам А8, А9, A10 ЕГЭ.
  2. Гельфгат И.М., Ненашев И.Ю. «Физика. Сборник задач 10 класс» 5.34, 5.43, 5.44, 5.47 ()
  3. Опираясь на задачу 5.47, определите коэффициент поверхностного натяжения воды и мыльного раствора.

Список вопросов-ответов

Вопрос: Почему поверхностное натяжение меняется с изменением температуры?

Ответ: При увеличении температуры, молекулы жидкости начинают двигаться быстрее, и следовательно, молекулы легче преодолевают потенциальные силы притяжения. Что и приводит к уменьшению сил поверхностного натяжения, являющихся потенциальными силами, которыми связываются молекулы приповерхностного слоя жидкости.

Вопрос: Зависит ли коэффициент поверхностного натяжения от плотности жидкости?

Ответ: Да, зависит, поскольку от плотности жидкости зависит энергия молекул приповерхностного слоя жидкости.

Вопрос: Какие существуют способы определения коэффициента поверхностного натяжения жидкости?

Ответ: В школьном курсе изучаютдва способа определениякоэффициента поверхностного натяжения жидкости. Первый - это метод отрыва проволочки, его принцип описан в задаче 5.44 из домашнего задания, второй - метод счета капель, описанный в задаче 5.47.

Вопрос: Почему через некоторое время мыльные пузыри разрушаются?

Ответ: Дело в том, что через некоторое время, под действием силы тяжести пузырь становится толще внизу, чем вверху, и затем под влиянием испарения разрушается в какой-либо точке. Это приводит к тому, что весь пузырь, подобно воздушному шарику, схлопывается под действием не скомпенсированных сил поверхностного натяжения.

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...