Как решать тригонометрические уравнения с синусом. Решение тригонометрических уравнений

Требует знания основных формул тригонометрии - сумму квадратов синуса и косинуса, выражение тангенса через синус и косинус и другие. Для тех, кто их забыл или не знает рекомендуем прочитать статью " ".
Итак, основные тригонометрические формулы мы знаем, пришло время использовать их на практике. Решение тригонометрических уравнений при правильном подходе – довольно увлекательное занятие, как, например, собрать кубик Рубика.

Исходя из самого названия видно, что тригонометрическое уравнение – это уравнение, в котором неизвестное находится под знаком тригонометрической функции.
Существуют так называемые простейшие тригонометрические уравнения. Вот как они выглядят: sinх = а, cos x = a, tg x = a. Рассмотрим, как решить такие тригонометрические уравнения , для наглядности будем использовать уже знакомый тригонометрический круг.

sinх = а

cos x = a

tg x = a

cot x = a

Любое тригонометрическое уравнение решается в два этапа: приводим уравнение к простейшему виду и далее решаем его, как простейшее тригонометрическое уравнение.
Существует 7 основных методов, с помощью которых решаются тригонометрические уравнения.

  1. Метод замены переменной и подстановки

  2. Решить уравнение 2cos 2 (x + /6) – 3sin( /3 – x) +1 = 0

    Используя формулы приведения получим:

    2cos 2 (x + /6) – 3cos(x + /6) +1 = 0

    Заменим cos(x + /6) на y для упрощения и получаем обычное квадратное уравнение:

    2y 2 – 3y + 1 + 0

    Корни которого y 1 = 1, y 2 = 1/2

    Теперь идем в обратном порядке

    Подставляем найденные значения y и получаем два варианта ответа:

  3. Решение тригонометрических уравнений через разложение на множители

  4. Как решить уравнение sin x + cos x = 1 ?

    Перенесем все влево, чтобы справа остался 0:

    sin x + cos x – 1 = 0

    Воспользуемся вышерассмотренными тождествами для упрощения уравнения:

    sin x - 2 sin 2 (x/2) = 0

    Делаем разложение на множители:

    2sin(x/2) * cos(x/2) - 2 sin 2 (x/2) = 0

    2sin(x/2) * = 0

    Получаем два уравнения

  5. Приведение к однородному уравнению

  6. Уравнение является однородным относительно синуса и косинуса, если все его члены относительно синуса и косинуса одной и той же степени одного и того же угла. Для решения однородного уравнения, поступают следующим образом:

    а) переносят все его члены в левую часть;

    б) выносят все общие множители за скобки;

    в) приравнивают все множители и скобки к 0;

    г) в скобках получено однородное уравнение меньшей степени, его в свою очередь делят на синус или косинус в старшей степени;

    д) решают полученное уравнение относительно tg.

    Решить уравнение 3sin 2 x + 4 sin x cos x + 5 cos 2 x = 2

    Воспользуемся формулой sin 2 x + cos 2 x = 1 и избавимся от открытой двойки справа:

    3sin 2 x + 4 sin x cos x + 5 cos x = 2sin 2 x + 2cos 2 x

    sin 2 x + 4 sin x cos x + 3 cos 2 x = 0

    Делим на cos x:

    tg 2 x + 4 tg x + 3 = 0

    Заменяем tg x на y и получаем квадратное уравнение:

    y 2 + 4y +3 = 0, корни которого y 1 =1, y 2 = 3

    Отсюда находим два решения исходного уравнения:

    x 2 = arctg 3 + k

  7. Решение уравнений, через переход к половинному углу

  8. Решить уравнение 3sin x – 5cos x = 7

    Переходим к x/2:

    6sin(x/2) * cos(x/2) – 5cos 2 (x/2) + 5sin 2 (x/2) = 7sin 2 (x/2) + 7cos 2 (x/2)

    Пререносим все влево:

    2sin 2 (x/2) – 6sin(x/2) * cos(x/2) + 12cos 2 (x/2) = 0

    Делим на cos(x/2):

    tg 2 (x/2) – 3tg(x/2) + 6 = 0

  9. Введение вспомогательного угла

  10. Для рассмотрения возьмем уравнение вида: a sin x + b cos x = c ,

    где a, b, c – некоторые произвольные коэффициенты, а x – неизвестное.

    Обе части уравнения разделим на :

    Теперь коэффициенты уравнения согласно тригонометрическим формулам обладают свойствами sin и cos, а именно: их модуль не более 1 и сумма квадратов = 1. Обозначим их соответственно как cos и sin , где – это и есть так называемый вспомогательный угол. Тогда уравнение примет вид:

    cos * sin x + sin * cos x = С

    или sin(x + ) = C

    Решением этого простейшего тригонометрического уравнения будет

    х = (-1) k * arcsin С - + k, где

    Следует отметить, что обозначения cos и sin взаимозаменяемые.

    Решить уравнение sin 3x – cos 3x = 1

    В этом уравнении коэффициенты:

    а = , b = -1, поэтому делим обе части на = 2

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Урок и презентация на тему: "Решение простейших тригонометрических уравнений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение в пространстве
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Что такое тригонометрические уравнения?

3. Два основных метода решения тригонометрических уравнений.
4. Однородные тригонометрические уравнения.
5. Примеры.

Что такое тригонометрические уравнения?

Ребята, мы с вами изучили уже арксинуса, арккосинус, арктангенс и арккотангенс. Теперь давайте посмотрим на тригонометрические уравнения в общем.

Тригонометрические уравнения – уравнения в котором переменная содержится под знаком тригонометрической функции.

Повторим вид решения простейших тригонометрических уравнений:

1)Если |а|≤ 1, то уравнение cos(x) = a имеет решение:

X= ± arccos(a) + 2πk

2) Если |а|≤ 1, то уравнение sin(x) = a имеет решение:

3) Если |а| > 1, то уравнение sin(x) = a и cos(x) = a не имеют решений 4) Уравнение tg(x)=a имеет решение: x=arctg(a)+ πk

5) Уравнение ctg(x)=a имеет решение: x=arcctg(a)+ πk

Для всех формул k- целое число

Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция.

Пример.

Решить уравнения: а) sin(3x)= √3/2

Решение:

А) Обозначим 3x=t, тогда наше уравнение перепишем в виде:

Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.

Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.

Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,

Тогда x= ((-1)^n)×π/9+ πn/3

Ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.

Ещё примеры тригонометрических уравнений.

Решить уравнения: а) cos(x/5)=1 б)tg(3x- π/3)= √3

Решение:

А) В этот раз перейдем непосредственно к вычислению корней уравнения сразу:

X/5= ± arccos(1) + 2πk. Тогда x/5= πk => x=5πk

Ответ: x=5πk, где k – целое число.

Б) Запишем в виде: 3x- π/3=arctg(√3)+ πk. Мы знаем что: arctg(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Ответ: x=2π/9 + πk/3, где k – целое число.

Решить уравнения: cos(4x)= √2/2. И найти все корни на отрезке .

Решение:

Решим в общем виде наше уравнение: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Теперь давайте посмотрим какие корни попадут на наш отрезок. При k При k=0, x= π/16, мы попали в заданный отрезок .
При к=1, x= π/16+ π/2=9π/16, опять попали.
При k=2, x= π/16+ π=17π/16, а тут вот уже не попали, а значит при больших k тоже заведомо не будем попадать.

Ответ: x= π/16, x= 9π/16

Два основных метода решения.

Мы рассмотрели простейшие тригонометрические уравнения, но существуют и более сложные. Для их решения применяют метод ввода новой переменной и метод разложения на множители. Давайте рассмотрим примеры.

Решим уравнение:

Решение:
Для решения нашего уравнения воспользуемся методом ввода новой переменной, обозначим: t=tg(x).

В результате замены получим: t 2 + 2t -1 = 0

Найдем корни квадратного уравнения: t=-1 и t=1/3

Тогда tg(x)=-1 и tg(x)=1/3, получили простейшее тригонометрическое уравнение, найдем его корни.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Ответ: x= -π/4+πk; x=arctg(1/3) + πk.

Пример решения уравнения

Решить уравнений: 2sin 2 (x) + 3 cos(x) = 0

Решение:

Воспользуемся тождеством: sin 2 (x) + cos 2 (x)=1

Наше уравнение примет вид:2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos(x) -2 = 0

Введем замену t=cos(x): 2t 2 -3t - 2 = 0

Решением нашего квадратного уравнения являются корни: t=2 и t=-1/2

Тогда cos(x)=2 и cos(x)=-1/2.

Т.к. косинус не может принимать значения больше единицы, то cos(x)=2 не имеет корней.

Для cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Ответ: x= ±2π/3 + 2πk

Однородные тригонометрические уравнения.

Определение: Уравнение вида a sin(x)+b cos(x) называются однородными тригонометрическими уравнениями первой степени.

Уравнения вида

однородными тригонометрическими уравнениями второй степени.

Для решения однородного тригонометрического уравнения первой степени разделим его на cos(x): Делить на косинус нельзя если он равен нулю, давайте убедимся что это не так:
Пусть cos(x)=0, тогда asin(x)+0=0 => sin(x)=0, но синус и косинус одновременно не равны нулю, получили противоречие, поэтому можно смело делить на ноль.

Решить уравнение:
Пример: cos 2 (x) + sin(x) cos(x) = 0

Решение:

Вынесем общий множитель: cos(x)(c0s(x) + sin (x)) = 0

Тогда нам надо решить два уравнения:

Cos(x)=0 и cos(x)+sin(x)=0

Cos(x)=0 при x= π/2 + πk;

Рассмотрим уравнение cos(x)+sin(x)=0 Разделим наше уравнение на cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Ответ: x= π/2 + πk и x= -π/4+πk

Как решать однородные тригонометрические уравнения второй степени?
Ребята, придерживайтесь этих правил всегда!

1. Посмотреть чему равен коэффициент а, если а=0 то тогда наше уравнение примет вид cos(x)(bsin(x)+ccos(x)), пример решения которого на предыдущем слайде

2. Если a≠0, то нужно поделить обе части уравнения на косинус в квадрате, получим:


Делаем замену переменной t=tg(x) получаем уравнение:

Решить пример №:3

Решить уравнение:
Решение:

Разделим обе части уравнения на косинус квадрат:

Делаем замену переменной t=tg(x): t 2 + 2 t - 3 = 0

Найдем корни квадратного уравнения: t=-3 и t=1

Тогда: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Ответ: x=-arctg(3) + πk и x= π/4+ πk

Решить пример №:4

Решить уравнение:

Решение:
Преобразуем наше выражение:


Решать такие уравнение мы умеем: x= - π/4 + 2πk и x=5π/4 + 2πk

Ответ: x= - π/4 + 2πk и x=5π/4 + 2πk

Решить пример №:5

Решить уравнение:

Решение:
Преобразуем наше выражение:


Введем замену tg(2x)=t:2 2 - 5t + 2 = 0

Решением нашего квадратного уравнения будут корни: t=-2 и t=1/2

Тогда получаем: tg(2x)=-2 и tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Ответ: x=-arctg(2)/2 + πk/2 и x=arctg(1/2)/2+ πk/2

Задачи для самостоятельного решения.

1) Решить уравнение

А) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7

2) Решить уравнения: sin(3x)= √3/2. И найти все корни на отрезке [π/2; π ].

3) Решить уравнение: ctg 2 (x) + 2ctg(x) + 1 =0

4) Решить уравнение: 3 sin 2 (x) + √3sin (x) cos(x) = 0

5) Решить уравнение:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6)Решить уравнение:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

Методы решения тригонометрических уравнений

Введение 2

Методы решения тригонометрических уравнений 5

Алгебраический 5

Решение уравнений с помощью условия равенства одноимённых тригонометрических функций 7

Разложение на множители 8

Приведение к однородному уравнению 10

Введение вспомогательного угла 11

Преобразование произведения в сумму 14

Универсальная подстановка 14

Заключение 17

Введение

До десятого класса порядок действий многих упражнений, ведущий к цели, как правило, однозначно определен. Например, линейные и квадратные уравнения и неравенства, дробные уравнения и уравнения, приводимые к квадратным, и т.п. Не разбирая подробно принцип решения каждого из упомянутых примеров, отметим то общее, что необходимо для их успешного решения.

В большинстве случаев надо установить, к какому типу относится задача, вспомнить последовательность действий, ведущих к цели, и выполнить эти действия. Очевидно, что успех или неуспех ученика в овладении приемами решения уравнений зависит главным образом от того, насколько он сумеет правильно определить тип уравнения и вспомнить последовательность всех этапов его решения. Разумеется, при этом предполагается, что ученик владеет навыками выполнения тождественных преобразований и вычислений.

Совершенно иная ситуация получается, когда школьник встречается с тригонометрическими уравнениями. При этом установить факт, что уравнение является тригонометрическим, нетрудно. Сложности возникают при нахождении порядка действий, которые бы привели к положительному результату. И здесь перед учеником встают две проблемы. По внешнему виду уравнения трудно определить тип. А не зная типа, почти невозможно выбрать нужную формулу из нескольких десятков, имеющихся в распоряжении.

Чтобы помочь ученикам найти верную дорогу в сложном лабиринте тригонометрических уравнений, их сначала знакомят с уравнениями, которые после введения новой переменной приводятся к квадратным. Затем решают однородные уравнения и приводимые к ним. Все заканчивается, как правило, уравнениями, для решения которых надо разложить на множители левую часть, приравняв затем каждый из множителей к нулю.

Понимая, что разобранных на уроках полутора десятков уравнений явно недостаточно, чтобы пустить ученика в самостоятельное плавание по тригонометрическому "морю", учитель добавляет от себя еще несколько рекомендаций.

Чтобы решить тригонометрическое уравнение, надо попытаться:

Привести все функции входящие в уравнение к «одинаковым углам»;

Привести уравнение к "одинаковым функциям";

Разложить левую часть уравнения на множители и т.п.

Но, несмотря на знание основных типов тригонометрических уравнений и нескольких принципов поиска их решения, многие ученики по-прежнему оказываются в тупике перед каждым уравнением, незначительно отличающимся от тех, что решались раньше. Остается неясным, к чему следует стремиться, имея то или иное уравнение, почему в одном случае надо применять формулы двойного угла, в другом - половинного, а в третьем - формулы сложения и т.д.

Определение 1. Тригонометрическим называется уравнение, в котором неизвестное содержится под знаком тригонометрических функций.

Определение 2. Говорят, что в тригонометрическом уравнении одинаковые углы, если все тригонометрические функции, входящие в него, имеют равные аргументы. Говорят, что в тригонометрическом уравнении одинаковые функции, если оно содержит только одну из тригонометрических функций.

Определение 3. Степенью одночлена, содержащего тригонометрические функции, называется сумма показателей степеней тригонометрических функций, входящих в него.

Определение 4. Уравнение называется однородным, если все одночлены, входящие в него, имеют одну и ту же степень. Эта степень называется порядком уравнения.

Определение 5. Тригонометрическое уравнение, содержащее только функции sin и cos , называется однородным, если все одночлены относительно тригонометрических функций имеют одинаковую степень, а сами тригонометрические функции имеют равные углы и число одночленов на 1 больше порядка уравнения.

Методы решения тригонометрических уравнений.

Решение тригонометрических уравнений состоит из двух этапов: преобразование уравнения для получения его простейшего вида и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.

I . Алгебраический метод. Этот метод хорошо известен из алгебры. (Метод замены переменный и подстановки).

Решить уравнения.

1)

Введём обозначение x =2 sin 3 t , получим

Решая это уравнение, получаем:
или

т.е. можно записать

При записи полученного решения из-за наличия знаков степень
записывать не имеет смысла.

Ответ:

Обозначим

Получаем квадратное уравнение
. Его корнями являются числа
и
. Поэтому данное уравнение сводится к простейшим тригонометрическим уравнениям
и
. Решая их, находим, что
или
.

Ответ:
;
.

Обозначим

не удовлетворяет условию

Значит

Ответ:

Преобразуем левую часть уравнения:

Таким образом, данное исходное уравнение можно записать в виде:

, т.е.

Обозначив
, получим
Решив данное квадратное уравнение имеем:

не удовлетворяет условию

Записываем решение исходного уравнения:

Ответ:

Подстановка
сводит данное уравнение к квадратному уравнению
. Его корнями являются числа
и
. Так как
, то заданное уравнение корней не имеет.

Ответ: корней нет.

II . Решение уравнений с помощью условия равенства одноимённых тригонометрических функций.

а)
, если

б)
, если

в)
, если

Используя данные условия, рассмотрим решение следующих уравнений:

6)

Пользуясь сказанным в п. а) получаем, что уравнение имеет решение в том и только в том случае, когда
.

Решая это уравнение, находим
.

Имеем две группы решений:

.

7) Решить уравнение:
.

Пользуясь условием п. б) выводим, что
.

Решая эти квадратные уравнения, получаем:

.

8) Решить уравнение
.

Из данного уравнения выводим, что . Решая это квадратное уравнение, находим, что

.

III . Разложение на множители.

Этот метод рассматриваем на примерах.

9) Решить уравнение
.

Решение. Перенесём все члены уравнения влево: .

Преобразуем и разложим на множители выражение в левой части уравнения:
.

.

.

1)
2)

Т.к.
и
не принимают значение нуль

одновременно, то разделим обе части

уравнения на
,

Ответ:

10) Решить уравнение:

Решение.

или


Ответ:

11) Решить уравнение

Решение:

1)
2)
3)

,


Ответ:

IV . Приведение к однородному уравнению.

Чтобы решить однородное уравнение надо:

Перенести все его члены в левую часть;

Вынести все общие множители за скобки;

Приравнять все множители и скобки к нулю;

Скобки, приравненные к нулю, дают однородное уравнение меньшей степени, которое следует разделить на
(или
) в старшей степени;

Решить полученное алгебраическое уравнение относительно
.

Рассмотрим примеры:

12) Решить уравнение:

Решение.

Разделим обе части уравнения на
,

Вводя обозначения
, именем

корни этого уравнения:

отсюда 1)
2)

Ответ:

13) Решить уравнение:

Решение. Используя формулы двойного угла и основное тригонометрическое тождество, приводим данное уравнение к половинному аргументу:

После приведения подобных слагаемых имеем:

Разделив однородное последнее уравнение на
, получим

Обозначу
, получим квадратное уравнение
, корнями которого являются числа

Таким образом

Выражение
обращается в нуль при
, т.е. при
,
.

Полученное нами решение уравнения не включает в себя данные числа.

Ответ:
, .

V . Введение вспомогательного угла.

Рассмотрим уравнение вида

Где a, b, c - коэффициенты, x - неизвестное.

Разделим обе части этого уравнения на

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса, а именно: модуль каждого из них не превосходит единицы, а сумма их квадратов равна 1.

Тогда можно обозначить их соответственно
(здесь - вспомогательный угол) и наше уравнение принимает вид: .

Тогда

И его решение

Заметим, что введенные обозначения взаимно заменяемы.

14) Решить уравнение:

Решение. Здесь
, поэтому делим обе части уравнения на

Ответ:

15) Решить уравнение

Решение. Так как
, то данное уравнение равносильно уравнению


Так как
, то существует такой угол , что
,
(т.е.
).

Имеем

Так как
, то окончательно получаем:


.

Заметим, что уравнение вида имеют решение тогда и только тогда, когда

16) Решить уравнение:

Для решения данного уравнения сгруппируем тригонометрические функции с одинаковыми аргументами

Разделим обе части уравнения на два

Преобразуем сумму тригонометрических функций в произведение:

Ответ:

VI . Преобразование произведения в сумму.

Здесь используются соответствующие формулы.

17) Решить уравнение:

Решение. Преобразуем левую часть в сумму:

VII. Универсальная подстановка.

,

эти формулы верны для всех

Подстановка
называется универсальной.

18) Решить уравнение:

Решение: Заменим и
на их выражение через
и обозначим
.

Получаем рациональное уравнение
, которое преобразуется в квадратное
.

Корнями этого уравнения являются числа
.

Поэтому задача свелась к решению двух уравнений
.

Находим, что
.

Значение вида
исходному уравнению не удовлетворяет, что проверяется проверкой - подстановкой данного значения t в исходное уравнение.

Ответ:
.

Замечание. Уравнение 18 можно было решить иным способом.

Разделим обе части этого уравнения на 5 (т.е. на
):
.

Так как
, то существует такое число
, что
и
. Поэтому уравнение принимает вид:
или
. Отсюда находим, что
где
.

19) Решить уравнение
.

Решение. Так как функции
и
имеют наибольшее значение, равное 1, то их сумма равна 2, если
и
, одновременно, то есть
.

Ответ:
.

При решении этого уравнения применялась ограниченность функций и .

Заключение.

Работая над темой « Решения тригонометрических уравнений » каждому учителю полезно выполнять следующие рекомендации:

    Систематизировать методы решения тригонометрических уравнений.

    Выбрать для себя шаги по выполнению анализа уравнения и признаки целесообразности использования того или иного метод решения.

    Продумать способы самоконтроля своей деятельности по реализации метода.

    Научиться составлять « свои » уравнения на каждый из изучаемых методов.

Приложение №1

Решите однородные или приводящиеся к однородным уравнения.

1.

Отв.

Отв.

Отв.

5.

Отв.

Отв.

7.

Отв.

Отв.

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...