Промышленное производство аммиака. Способы получения аммиака

На процесс производства оптимального количества химического вещества, а также достижения максимального его качества влияет ряд факторов. Получение аммиака зависит от показателей давления, температуры, наличия катализатора, используемых веществ и способа извлечения полученного материала. Эти параметры необходимо правильно сбалансировать для достижения наибольшей прибыли от производственного процесса.

Свойства аммиака

При комнатной температуре и нормальной влажности воздуха аммиак находится в газообразном состоянии и имеет очень отталкивающий запах. Он наделен ядовитым и раздражающим слизистые оболочки воздействием на организм. Получение и свойства аммиака зависят от участия в процессе воды, так как это вещество очень растворимо в нормальных характеристиках окружающей среды.

Аммиак является соединением водорода и азота. Его химическая формула - NH 3 .

Это химическое вещество выступает активным восстановителем, в результате горения которого выделяется свободный азот. Аммиак проявляет характеристики оснований и щелочей.

Реакция вещества с водой

При растворении NH 3 в воде получают аммиачную воду. Максимально при обычной температуре можно растворить в 1 объеме водного элемента 700 объемов аммиака. Известно это вещество как нашатырный спирт и широко применяется в отрасли производства удобрений, в технологических установках.

Полученный путем растворения в воде NH 3 по своим качествам частично ионизирован.

Нашатырный спирт используется в одном из методов лабораторного получения этого элемента.

Получение вещества в лаборатории

Первый метод получения аммиака заключается в доведении нашатырного спирта до кипения, после чего полученный пар осушают и собирают требуемое химическое соединение. Получение аммиака в лаборатории возможно также путем нагревания гашеной извести и твердого хлорида аммония.

Реакция получения аммиака имеет такой вид:

2NH 4 Cl + Ca(OH) 2 → CaCl 2 + 2NH 3 + 2H 2 O

В ходе этой реакции выпадает осадок белого цвета. Это соль CaCl 2 , а еще образовывается вода и искомый аммиак. Для проведения осушения требуемого вещества его пропускают по смеси извести в сочетании с натром.

Получение аммиака в лаборатории не обеспечивает самую оптимальную технологию его производства в необходимых количествах. Люди много лет искали способы добычи вещества в промышленных масштабах.

Истоки налаживания технологий производства

На протяжении 1775-1780 годов были осуществлены опыты по связыванию свободных молекул азота из атмосферы. Шведский химик К. Шелле нашел реакцию, которая имела вид

Na 2 CO 3 + 4C + N 2 = 2NaCN + 3CO

На ее основе в 1895 году Н. Каро и А. Франк разработали метод связывания свободных молекул азота:

CaC 2 + N 2 = CaCN 2 + C

Этот вариант требовал больших затрат энергии и был экономически невыгодным, поэтому со временем от него отказались.

Еще одним довольно затратным методом стал открытый английскими химиками Д. Пристли и Г. Кавендишем процесс взаимодействия молекул азота и кислорода:

Рост потребности в аммиаке

В 1870 году это химическое вещество считалось нежелательным продуктом газовой промышленности и было практически бесполезным. Однако спустя 30 лет это оно стало очень востребованным в коксохимической отрасли.

Сначала возросшую потребность в аммиаке восполняли путем его выделения из каменного угля. Но при росте потребления вещества в 10 раз по поиску путей его добычи велась практическая работа. Получение аммиака стали внедрять с применением запасов атмосферного азота.

Потребность в веществах на основе азота наблюдалась практически во всех известных отраслях экономики.

Поиск путей удовлетворения промышленного спроса

Долгий путь прошло человечество к осуществлению уравнения производства вещества:

N 2 + 3H 2 = 2NH 3

Получение аммиака в промышленности впервые удалось реализовать в 1913 году путем каталитического синтеза из водорода и азота. Способ открыт Ф. Габером в 1908 году.

Открытая технология разрешила давнюю проблему многих ученых разных стран. До этого момента не удавалось связать азот в виде NH 3 . Этот химический процесс получил название цианамидной реакции. При повышении температуры извести и углерода получалось вещество CaC 2 (карбид кальция). Путем нагревания азота и добивались получения цианамида кальция CaCN 2 , из которого выделение аммиака проходило путем гидролиза.

Внедрение технологий для получения аммиака

Получение NH 3 в глобальных масштабах промышленного потребления началось с покупки патента технологий Ф. Габера представителем Баденского содового завода А. Митташем. В начале 1911 года синтез аммиака на небольшой установке стал регулярным. К. Бош создал большой контактный аппарат, исходя из разработок Ф. Габера. Это было оригинальное оборудование, обеспечивающее процесс извлечения аммиака путем синтеза в производственном масштабе. К. Бош взял на себя все руководство по данному вопросу.

Экономия энергозатрат предполагала участие в реакциях синтеза определенных катализаторов.

Группа ученых, работающая над поиском подходящих составляющих, предложила следующее: железный катализатор, в который добавлялись оксиды калия и алюминия и который поныне считается одним из наилучших, обеспечивающих получение аммиака в промышленности.

9.09.1913 начал свою работу первый в мире завод, применяющий технологию каталитического синтеза. Постепенно наращивались производственные мощности, и к концу 1917 года вырабатывалось 7 тыс. т аммиака за месяц. В первый год работы завода этот показатель составлял всего 300 т в месяц.

Впоследствии во всех других странах тоже стали применять технологию синтеза с применением катализаторов, которая по своей сути не очень отличалась от техники Габера - Боша. Применение высокого давления и циркуляционных процессов происходило в любом технологическом процессе.

Внедрение синтеза в России

В России также применялся синтез с применением катализаторов, обеспечивающих получение аммиака. Реакция имеет такой вид:

В России самый первый завод аммиачного синтеза начал свою работу в 1928 году в Чернореченске, а далее были построены производства во многих других городах.

Практическая работа по получению аммиака постоянно набирает обороты. В период с 1960 по 1970 год синтез увеличился почти в 7 раз.

В стране для успешного получения, собирания и распознавания аммиака используют смешанные каталитические вещества. Изучение их состава осуществляет группа ученых под предводительством С. С. Лачинова. Именно эта группа нашла наиболее эффективные материалы для технологии осуществления синтеза.

Также постоянно ведутся исследования кинетики процесса. Научные разработки в этой области вели М. И. Темкин, а также его сотрудники. В 1938 году этот ученый вместе со своим коллегой В. М. Пыжевым сделал важное открытие, совершенствуя получение аммиака. Уравнение кинетики синтеза, составленное этими химиками, применяется отныне по всему миру.

Современный процесс синтеза

Процесс получения аммиака при помощи катализатора, применяемый в сегодняшнем производстве, имеет обратимый характер. Поэтому очень актуальным является вопрос оптимального уровня воздействия показателей на достижение максимального выхода продукции.

Процесс протекает при высокой температуре: 400-500 ˚С. Для обеспечения необходимой скорости прохождения реакции применяется катализатор. Современное получение NH 3 предполагает использование высокого давления - около 100-300 атм.

Совместно с применением циркуляционной системы можно получить достаточно большую массу превращенных в аммиак первоначальных материалов.

Современное производство

Система работы любого аммиачного завода достаточно сложная и содержит в себе нескольких этапов. Технология получения искомого вещества осуществляется в 6 этапов. В процессе проведения синтеза происходит получение, собирание и распознавание аммиака.

Первоначальная стадия заключается в извлечении серы из природного газа при помощи десульфуратора. Эта манипуляция требуется вследствие того, что сера является каталитическим ядом и убивает никелевый катализатор еще на стадии извлечения водорода.

На втором этапе проходит конверсия метана, которая протекает с применением высокой температуры и давления при использовании никелевого катализатора.

На третьей стадии случается частичное выгорание водорода в кислороде воздуха. В результате производится смесь водяного пара, оксида углерода, а также азота.

На четвертом этапе происходит реакция сдвига, которая проходит при различных катализаторах и двух отличных температурных режимах. Первоначально применяется Fe 3 O 4 , и процесс протекает при температуре 400 ˚С. Во второй стадии участвует более эффективный по своему воздействию медный катализатор, что позволяет осуществление производства при низких температурах.

Следующая пятая стадия предполагает избавление от ненужного оксида углерода (VI) из смеси газа путем применения технологии поглощения раствором щелочи.

На завершающем этапе оксид углерода (II) удаляется при использовании реакции конверсии водорода в метан через никелевый катализатор и большую температуру.

Полученная в результате всех манипуляций смесь газа содержит 75 % водорода и 25 % азота. Ее сжимают под большим давлением, а затем остужают.

Именно эти манипуляции описывает формула выделения аммиака:

N 2 + 3H 2 ↔ 2 NH 3 + 45,9 кДж

Хоть этот процесс выглядит не очень сложным, однако все вышеперечисленные действия по ее осуществлению говорят о сложности получения аммиака в промышленном масштабе.

На качество конечного продукта влияет отсутствие в сырье примесей.

Пройдя долгий путь от небольшого лабораторного опыта до масштабного производства, получение аммиака на сегодняшний день является востребованной и незаменимой отраслью химической промышленности. Этот процесс постоянно совершенствуется, обеспечивая качество, экономичность и необходимое количество продукта для каждой ячейки народного хозяйства.

ОПРЕДЕЛЕНИЕ

Аммиак — нитрид водорода.

Формула – NH 3 . Молярная масса – 17 г/моль.

Физические свойства аммиака

Аммиак (NH 3) – бесцветный газ с резким запахом (запах «нашатырного спирта»), легче воздуха, хорошо растворим в воде (один объем воды растворят до 700 объемов аммиака). Концентрированный раствор аммиака содержит 25% (массовых) аммиака и имеет плотность 0,91 г/см 3 .

Связи между атомами в молекуле аммиака – ковалентные. Общий вид молекулы AB 3 . В гибридизацию вступают все валентные орбитали атома азота, следовательно, тип гибридизации молекулы аммиака – sp 3 . Аммиак имеет геометрическую структуру типа AB 3 E – тригональная пирамида (рис. 1).

Рис. 1. Строение молекулы аммиака.

Химические свойства аммиака

В химическом отношении аммиак довольно активен: он вступает в реакции взаимодействия со многими веществами. Степень окисления азота в аммиаке «-3» — минимальная, поэтому аммиак проявляет только восстановительные свойства.

При нагревании аммиака с галогенами, оксидами тяжелых металлов и кислородом образуется азот:

2NH 3 + 3Br 2 = N 2 + 6HBr

2NH 3 + 3CuO = 3Cu + N 2 + 3H 2 O

4NH 3 +3O 2 = 2N 2 + 6H 2 O

В присутствии катализатора аммиак способен окисляться до оксида азота (II):

4NH 3 + 5O 2 = 4NO + 6H 2 O (катализатор – платина)

В отличие от водородных соединений неметаллов VI и VII групп, аммиак не проявляет кислотные свойства. Однако, атомы водорода в его молекуле все же способны замещаться на атомы металлов. При полном замещении водорода металлом происходит образование соединений, называемых нитридами, которые также можно получить и при непосредственном взаимодействии азота с металлом при высокой температуре.

Основные свойства аммиака обусловлены наличием неподеленной пары электронов у атома азота. Раствор аммиака в воде имеет щелочную среду:

NH 3 + H 2 O ↔ NH 4 OH ↔ NH 4 + + OH —

При взаимодействии аммиака с кислотами образуются соли аммония, которые при нагревании разлагаются:

NH 3 + HCl = NH 4 Cl

NH 4 Cl = NH 3 + HCl (при нагревании)

Получение аммиака

Выделяют промышленные и лабораторные способы получения аммиака. В лаборатории аммиак получают действием щелочей на растворы солей аммония при нагревании:

NH 4 Cl + KOH = NH 3 + KCl + H 2 O

NH 4 + + OH — = NH 3 + H 2 O

Эта реакция является качественной на ионы аммония.

Применение аммиака

Производство аммиака – один из важнейших технологических процессов во всем мире. Ежегодно в мире производят около 100 млн. т. аммиака. Выпуск аммиака осуществляют в жидком виде или в виде 25%-го водного раствора – аммиачной воды. Основные направления использования аммиака – производство азотной кислоты (производство азотсодержащих минеральных удобрений в последствии), солей аммония, мочевины, уротропина, синтетических волокон (нейлона и капрона). Аммиак применяют в качестве хладагента в промышленных холодильных установках, в качестве отбеливателя при очистке и крашении хлопка, шерсти и шелка.

Примеры решения задач

ПРИМЕР 1

Задание Каковы масса и объем аммиака, которые потребуются для получения 5т нитрата аммония?
Решение Запишем уравнение реакции получения нитрата аммония из аммиака и азотной кислоты:

NH 3 + HNO 3 = NH 4 NO 3

По уравнению реакции количество вещества нитрата аммония равно 1 моль — v(NH 4 NO 3) = 1моль. Тогда, масса нитрата аммония, рассчитанная по уравнению реакции:

m(NH 4 NO 3) = v(NH 4 NO 3)×M(NH 4 NO 3);

m(NH 4 NO 3) = 1×80 = 80 т

Согласно уравнению реакции, количество вещества аммиака также равно 1 моль — v(NH 3) = 1моль. Тогда, масса аммиака, рассчитанная по уравнению:

m(NH 3) = v(NH 3)×M(NH 3);

m(NH 3) = 1×17 = 17 т

Составим пропорцию и найдем массу аммиака (практическую):

х г NH 3 – 5 т NH 4 NO 3

17 т NH 3 – 80 т NH 4 NO 3

х = 17×5/80 = 1,06

m(NH 3) = 1,06 т

Аналогичную пропорцию составим для нахождения объема аммиака:

1,06 г NH 3 – х л NH 3

17 т NH 3 – 22,4×10 3 м 3 NH 3

х = 22,4×10 3 ×1,06 /17 = 1,4×10 3

V(NH 3) = 1,4×10 3 м 3

Ответ Масса аммиака — 1,06 т, объем аммиака — 1,4×10 м

Аммиак (NH3) представляет собой химическое соединение водорода с азотом. Свое название он получил от греческого слова «hals ammniakos» или латинского «sal ammoniacus» которые переводятся одиноково - «нашатырь». Именно такое вещество под названием получали в Ливийской пустыне в оазисе Аммониум.

Аммиак считается очень ядовитым веществом, которое способно раздражать слизистые оболочки глаз и дыхательных путей. Первичными симптомами являются обильное слезотечение, одышка и воспаление легких. Но вместе с тем, аммиак - ценное химическое вещество, которое широко используется для получения неорганических кислот, например, азотной, синильной, а также мочевины и азотсодержащих солей. Жидкий аммиак - это превосходное рабочее вещество холодильных контейнеров и машин, так как он имеет большую удельную теплоту испарения. Водные используют как жидкие удобрения, а также для аммонизации суперфосфатов и туковых смесей.

Получение аммиака из отходящих газов в процессе коксования угля является древнейшим и весьма доступным методом, но на сегодняшний день он уже устарел и практически не используется.

Современным и основным способом является получение аммиака в промышленности на основе процесса Габера. Его суть в прямом взаимодействии азота и водорода, которое протекает в результате конверсии углеводородных газов. В качестве исходного сырья выступают обычно нефтепереработки, попутные нефтяные газы, остаточные газы от производства ацетилена. Суть метода конверсионного получения аммиака состоит в разложении метана и его гомологов при высокой температуре на составляющие: водород и с участием окислителей - кислорода и водяного пара. При этом к конвертируемому газу подмешивают воздух, обогащенный кислородом, либо атмосферный воздух. Изначально реакция получения аммиака на основе конвертируемого газа протекает с выделение тепла, но с понижением объема исходных продуктов реакции:

N2 + 3H2 ↔ 2NH3 + 45,9 кДж

Однако получение аммиака в промышленных масштабах ведется с использованием катализатора и при искусственно созданных условиях, которые позволяют увеличить выход готового продукта. В атмосфере, где проходит получение аммиака, увеличивается давление до 350 атмосфер, а температура поднимается до 500 градусов Цельсия. При таких условиях выход аммиака - около 30%. Газ удаляется из зоны реакции с помощью метода охлаждения, а азот и водород, которые не прореагировали, возвращаются обратно в колонну синтеза и снова могут участвовать в реакциях. В ходе синтеза очень важно очистить смесь газов от каталитических ядов, веществ, способных сводить на нет действие катализаторов. Такими веществами являются пары воды, СО, As, P, Se, O2, S.

В качестве катализатора в реакциях синтеза азота и водорода выступает пористое железо с примесями оксидов алюминия и калия. Только это вещество, из всех 20 тысяч ранее перепробованных, позволяет достичь равновесного состояния реакции. Такой принцип получения аммиака считается самым экономичным.

Получение аммиака в лаборатории основано на технологии вытеснения его из аммониевых солей сильными щелочами. Схематически эта реакция представлена следующим образом:

2NH4CI + Ca(OH)2 = 2NH3 + CaCl2 + 2H2O

NH4Cl + NaOH = NH3 + NaCl + H2O

Чтобы удалить лишнюю влагу и осушить аммиак, его пропускают через смесь едкого натра и извести. Получение аммиака очень сухого достигается в результате растворения в нем металлического натра и последующей перегонки смеси. Чаще всего такие реакции проводят в закрытой металлической системе под вакуумом. Причем такая система должна выдержать высокое давление, которое достигается выделяющимися парами аммиака, до 10 атмосфер при комнатной температуре.

Современный процесс получения аммиака основан на его синтезе из азота и водорода при температурах 380 - 450 0C и давлении 250 атм с использованием железного катализатора:

N2 (г.) + 3H2 (г.) = 2NH3 (г.)

Азот получают из воздуха. Водород получают восстановлением воды (пара) с помощью метана из природного газа либо из лигроина. Лигроин (нафта) представляет собой жидкую смесь алифатических углеводородов, которая получается при переработке сырой нефти (см. гл. 18).

Работа современного аммиачного завода очень сложна. На рис. 7.2 показана упрощенная схема действия аммиачного завода, работающего на природном газе. Эта схема действия включает восемь стадий.

1-я стадия. Удаление серы из природного газа. Это необходимо, поскольку сера представляет собой каталитический яд (см. разд. 9.2).

2-я стадия. Получение водорода восстановлением пара при 750 0C и давлении 30 атм с помощью никелевого катализатора:

CH4 (г.) + H2O (г.) = СО (г.) + ЗН 2 (г.)

3-я стадия. Впуск воздуха и сгорание части водорода в кислороде вводимого воздуха:

2H2 (г.) + O2 (г.) = 2H2O (г.) В результате получается смесь водяного пара, моноксида углерода и азота. Водяной пар восстанавливается с образованием водорода, как на 2-й стадии.

4-я стадия. Окисление моноксида углерода, образующегося на стадиях 2 и 3, до диоксида углерода по следующей реакции «сдвига»: СО (г.) + H2O (г.) = CO2 (г.) + H2 (г.)

Этот процесс проводится в двух «реакторах сдвига». В первом из них используется катализатор из оксида железа и процесс проводится при температуре порядка 400 0C Во втором используется медный катализатор и процесс проводится при температуре 220°С.

5-я стадия. Вымывание диоксида углерода из газовой смеси при помощи буферного щелочного раствора карбоната калия или раствора какого-либо амина, например этаноламина NH2CH2CH2OH. Диоксид углерода в конце концов сжижают и используют для производства мочевины, либо выпускают в атмосферу.

6-я стадия. После 4-й стадии в газовой смеси остается еще около 0,3% моноксида углерода. Поскольку он может отравлять железный катализатор во время синтеза аммиака (на 8-й стадии), моноксид углерода удаляют путем конверсии водородом в метан на никелевом катализаторе при температуре 325°С.

7-я стадия. Газовую смесь, которая теперь содержит приблизительно 74% водорода и 25% азота, подвергают сжатию; при этом ее давление возрастает от 25-30 атм до 200 атм. Поскольку это приводит к повышению температуры смеси, ее сразу же после сжатия охлаждают.


8-я стадия. Газ из компрессора поступает теперь в «цикл синтеза аммиака». Схема, приведенная на рис. 7.2, дает упрощенное представление об этой стадии. Сначала газовая смесь попадает в каталитический конвертер, в котором используется железный катализатор и поддерживается температура 380-450°С. Газовая смесь, выходящая из этого конвертера, содержит не более 15% аммиака. Затем аммиак сжижают и направляют в приемный бункер, а непрореагировавшие газы возвращают в конвертер.

Способы получения аммиака


Сырьем в производстве аммиака является азотоводородная смесь (ABC) стехиометрического состава N2: Н2 = 1: 3. Так как ресурсы атмосферного азота практически неисчерпаемы, сырьевая база аммиачного производства определяется вторым компонентом смеси - водородом, который может быть получен разделением обратного коксового газа, газификацией твердого топлива, конверсией природного газа (рис. 14.5).


Рис. 14.5. Сырьевые ресурсы производства аммиака


Структура сырьевой базы производства аммиака менялась и свыше 90% аммиака вырабатывается на основе природ - 14.3 приведена динамика изменения структуры основных видов сырья аммиачного производства.


Таблица 14.3. Изменение сырьевой базы производства аммиака


Азотоводородная смесь, независимо от метода ее получения, содержит примеси веществ, некоторые из которых являются каталитическими ядами, вызывающими как обратимое (кислород, оксиды углерода, пары воды), так и необратимое (различные соединения серы и фосфора) отравление катализатора.

С целью удаления этих веществ ABC подвергается предварительной очистке, методы и глубина которой зависят от их природы и содержания, то есть от способа производства ABC, Обычно, ABC, получаемая конверсией природного газа, содержит оксид углерода (IV), метан, аргон, следы кислорода и до 0,4% Об. оксида углерода (II).

Для очистки ABC в промышленности используются методы абсорбции жидкими поглотителями (мокрый метод) и адсорбции твердыми поглотителями (сухой метод). При этом, процесс очистки может производиться на различных стадиях производства:

Исходного газа перед подачей его на конверсию;

конвертированного газа для удаления из него оксида углерода (IV);

Азотоводородной смеси непосредственно перед синтезом аммиака (тонкая очистка ABC).

Первые два процесса рассматриваются при описании соответствующих производств.

Тонкая очистка ABC достигается хемосорбцией примесей жидкими реагентами и, окончательно, каталитическим гидрированием их или промыванием ABC жидким азотом.

Для удаления оксида углерода (IV) и сероводорода ABC промывают в башнях с насадкой щелочными реагентами, образующими с ними нестойкие термически соли: водным раствором этаноламина или горячим, активированным добавкой диэтаноламина, раствором карбоната калия. При этом протекают, соответственно, реакции:


H2S + CH2OH-CH2NH2+HS- - ?Н,

СО2 + К2СОз + Н2O? 2КНСО3 - ?Н.


Оксид углерода (II) удаляют из ABC промывкой ее медноаммиачным раствором ацетата меди:

СО + NH3 + +Ац? +Ац -?Н,


где: Ац = СН3СОО.

Применяемые для хемосорбции абсорбенты образуют с поглощаемыми из ABC нестойкие соединения. Поэтому, при нагревании их растворов и снижении давления происходит десорбция растворенных примесей, что позволяет легко регенерировать абсорбент, возвратить его в процесс и обеспечить цикличность операции абсорбции по схеме:

где: П - поглощаемая из ABC примесь, А - абсорбент, ПА - соединение примеси и абсорбента.

Более эффективным методом очистки ABC от оксида углерода (II) является применяемая в современных установках промывка ABC жидким азотом при -190 °С, в процессе которой из нее удаляются, помимо оксида углерода (II), метан и аргон.

Окончательная очистка ABC достигается каталитическим гидрированием, примесей, получившим название метанирования или предкатализа. Этот процесс проводится в специальных установках метанирования (рис. 14.6) при температуре 250-300 °С и давлении около 30 МПа на никель-алюминиевом катализаторе (Ni + Al2O3). При этом протекают экзотермические реакции восстановления кислородсодержащих примесей до метана, который не является ядом для железного катализатора, а вода конденсируется при охлаждении очищенного газа и удаляется из него:


СО + ЗН2 ? СН4 + Н2О -?Н,

СО2+ 4Н2 ?СH4 + 2Н2О - ?Н,

О2 + 2Н2 ?2Н2О - ?Н


Рис. 14.6. Схема установки метанирования ABC: 1 - компрессор, 2 - подогреватель, 3 - реактор метанирования, 4 - подогреватель воды, 5 - конденсатор, 6 - влагоотделитель


Если в предкатализе используется железный катализатор, в процессе гидрирования также образуется некоторое количество аммиака, в этом случае предкатализ называется продурующим.

Процесс метанирования прост, легко управляем, а выделяющееся за счет протекающих экзотермических реакций гидрирования тепло, используется в общей энерготехнологической схеме производства аммиака. Очищенная ABC, поступающая на синтез, содержит до 0025 об. долей аргона, 0,0075 об. долей метана и не более, 00004 об. долей оксида углерода (II), являющегося наиболее сильным каталитическим ядом.

В основе процесса синтеза аммиака лежит обратимая экзотермическая реакция, протекающая с уменьшением объема газа:

2+3H2 + 2NH3 + Q.


В соответствии с принципом Ле-Шателье при повышении давления и уменьшении температуры равновесие этой реакции смещается в сторону образования аммиака. Для обеспечения оптимальной скорости процесса необходимы катализатор, повышенное давление, температура 400… 500 °С и определенная объемная скорость вступающих в реакцию компонентов. В промышленности используется железный катализатор с добавками оксидов Аl2О3, К2О, СаО и SiO2.

Различают следующие промышленные системы агрегатов синтеза аммиака: низкого давления (10…20 МПа), среднего (20… 45 МПа) и высокого давления (60…100 МПа). Мировой практике широко применяются системы среднего давления, так как при этом наиболее удачно решаются вопросы выделения аммиака из азотно-водородной смеси при достаточно высокой скорости процесса.


СН4 + Н2О? СО + 3Н2


Происходит частичное сгорание водорода в кислороде воздуха:


Н2 + О2 = Н2О(пар)


В результате на этой стадии получается смесь водяного пара, оксида углерода (II) и азота.

Основным агрегатом установки для производства аммиака служит колонна синтеза (рис. 1.1). Трубчатая колонна в системе среднего давления представляет собой цилиндр 4 из хромованадиевой стали с толщиной стенок до 200 мм, диаметром 1…1,4 м и высотой около 20 м. Сверху и снизу она закрывается стальными крышками 2.

Конструктивно колонны различаются главным образом размерами корпуса и устройством внутренней насадки. В верхней части рассматриваемой колонны расположена катализаторная коробка 3, а в нижней - теплообменник 8, обеспечивающий автотермичность процесса. Катализаторная коробка связана с теплообменником центральной трубкой 7. Корпус колонны имеет тепловую изоляцию 5. Катализатор загружается на колосниковую решетку 6. Для обеспечения равномерного распределения температуры в слой катализатора вводятся двойные трубы 1.


Рис. 1.1. Колонна синтеза аммиака с двойными противоточными теплообменными трубками


В настоящее время колонны для синтеза аммиака совмещаются с паровыми котлами для утилизации теплоты выходящих газов (на 1 т аммиака приходится 0,6…1 т водяного пара при давлении 1,5…2 МПа). Колонны синтеза аммиака под средним давлением имеют производительность около 150 т аммиака в сутки и работают без замены катализатора в течение четырех лет.

При синтезе аммиака под средним давлением (рис. 1.1) азотно-водородная смесь (N22=1:3) подается в колонну 1, где на катализаторе происходит синтез аммиака; из колонны выходит азотно-водородно-аммиачная газовая смесь (содержание аммиака - 14…20%), имеющая температуру около 200 °С. Эта смесь направляется в водяной холодильник 2, охлаждается до 35 °С и поступает в сепаратор 3. Здесь из газа выделяется до 60% образовавшегося в колонне аммиака (при давлении 30 МПа аммиак не может сконденсироваться в холодильнике полностью). Полнее аммиак выделяется при охлаждении азотно-водородной смеси до более низких температур. Эта смесь с остатками аммиака из сепаратора 3 направляется в циркуляционный компрессор 4 и далее в фильтр 6 для отделения компрессорного масла. На входе в фильтр к оборотным газам добавляется свежая азотно-водородная смесь, сжатая до рабочего давления с помощью многоступенчатого компрессора 5. Из фильтра газовая смесь подается в систему вторичной конденсации аммиака, состоящую из конденсационной колонны 7 и испарителя жидкого аммиака 8. В конденсационной колонне газ предварительно охлаждается в расположенном в верхней части колонны теплообменнике и затем направляется в испаритель 8, где за счет испарения поступающего жидкого аммиака достигается охлаждение газа до - 5 °С и конденсация аммиака из газа до остаточного содержания в нем около 2,5% NНз. Сконденсировавшийся аммиак выделяется в нижней части конденсационной колонны 7, являющейся сепаратором. После отделения аммиака азотно-водородная смесь охлаждает в верхней части колонны 7 поступающий в нее газ, а затем вновь направляется в колонну синтеза 1.

В случае синтеза аммиака под более высоким давлением (45 МПа и выше) отпадает необходимость во вторичной его конденсации, так как на выходе из водяного холодильника остаточное содержание аммиака в азотно-водородной смеси незначительно.


Рис. 17.16. Схема установки для синтеза аммиака под средним давлением


Описание технологического процесса производства аммиака и его характеристика.

. Дуговой метод. Дуговой метод состоит в том, что через пламя электрической дуги продувается воздух. При температуре около 3000 °С протекает обратимая реакция

2 + О2 ?2NО - Q.


Образующийся оксид азота (II) может быть окислен до оксида азота (IV) и переработан в азотную кислоту и другие соединения. Для получения 1 т связанного азота этим способом расходуется 60 000…70 000 кВт-ч электроэнергии.

2. Цианамидный метод. Первым промышленным процессом, который использовался для получения аммиака, был цианамидный процесс. При нагревании извести СаО и углерода получали карбид кальция СаС2. Затем карбид нагревали в атмосфере азота и получали цианамид кальция СаСN2; далее аммиак получали гидролизом цианамида:


СаСN2(тв) + 3Н2О = 2NН3? + СаСО3(тв)


Этот процесс требовал больших затрат энергии и экономически был невыгоден.

Современный процесс получения аммиака основан на способности тонкоизмельченного карбида кальция при температуре около 1000 °С взаимодействовать с азотом по уравнению


СаС2 + N2 = CaCN2 + С + 302 кДж


Доля производства связанного азота цианамидным методой весьма незначительна.

Аммиачный метод фиксации азота заключается в его синтезе из азота и водорода с использованием специального катализатора:

2 + 3Н2 ? 2NН3? + 45,9 кДж


Этот метод имеет экономическое и технологическое преимущество перед остальными способами связывания элементарного азота

3. Аммиачный метод. Аммиачный метод связывания атмосферного азота состоит в соединении азота с водородом и получении аммиака:

N2+3H2 ?2NH3 + Q.


Он наиболее экономичен (расход электроэнергии составляет 4000…5000 кВт-ч на 1 т аммиака), технологически легче осуществим по сравнению с другими методами связывания атмосферного азота. В общем производстве азотных соединений свыше 90% приходится на аммиак. Водород для этой реакции получают термическим крекингом углеводородов, действием паров воды на уголь или железо, разложением спиртов парами воды или электролизом воды.

4. Вариант аммиачного метода. В 1909 году был разработан оригинальный метод одновременного получения аммиака и оксида алюминия из бокситов через нитрид алюминия по схеме, представленной на рис. 14.4.


Рис. 14.4. Производство аммиака из бокситов


Промышленные установки по этому методу были построены в период 1909-1918 гг. в ряде стран, но метод не нашел применения вследствие низкой экономичности производства.

Химическая и принципиальная схемы производства.

Основная стадия процесса синтеза аммиака из азотоводородной смеси описывается уравнением:

N2 + 3H2 = 2NH3


Однако, так как преобладающим методом получения ABC является конверсия метана воздухом и водяным паром, химическая схема производства аммиака включает помимо этой реакции несколько реакций воздушной и паровой конверсии:


СН4 + Н2О = ЗН2 + СО,

СН4 + 0,5O2(N2) = 2Н2(N2) + СО


и последующего превращения оксида углерода (II) в оксид углерода (IV):


СО + Н2О = Н2 + СО2

аммиак производство абсорбция колонна

После удаления оксида углерода (IV) из газовой смеси и коррекции ее состава получают ABC с содержанием азота и водорода в отношении 1: 3.

Таким образом, современное производство аммиака состоит из двух стадий: приготовления ABC и превращения ее в аммиак, представляя единую энерготехнологическую схему, в которой сочетаются операции получения ABC, ее очистки и синтеза аммиака и эффективно используются тепловые эффекты всех стадий процесса, что позволяет в несколько раз снизить затраты электроэнергии.


Рис. 14.7. Принципиальная схема производства аммиака

1-очистка природного газа от сернистых соединений, 2 - паровая конверсия метана, 3-воздушная конверсия метана, 4 - конверсия оксида углерода (II), 5-хемосорбционная очистка ABC, 6 - метаниро - вание, 7-синтез аммиака, 8 - абсорбция аммиака, 9-сжатие аммиака, I-природный газ, II-конвертированный газ, III-ABC, IV - метан

Принципиальная схема производства аммиака состоит из трёх стадий:

Первая стадия - получение АВС (азотоводородная смесь):

Я операция: очистка природного газа от сернистых соединений;

Я операция: паровая конверсия метана;

Я операция: воздушная конверсия метана;

Я операция: конверсия оксида углерода (II).

Вторая стадия - очистка газа от балластных примесей и примесей, отравляющих катализатор:

Я операция: очистка АВС абсорбционными методами от оксида углерода (II) и оксида углерода (IV);

Я операция: тонкая очистка АВС от оксида углерода (II) и оксида углерода (IV) методом метанирования или предкатадиза.

Третья стадия - синтез аммиака из АВС в присутствии катализатора.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...