Общая характеристика альдегидов и кетонов. Альдегиды изомерны другому классу соединений - кетонам

Пришло время подробнее познакомиться с этим классом органических соединений.

\
Альдегиды - органические вещества, молекулы которых содержат карбонильную группу С=0, соединенную с атомом водорода и углеводородным радикалом. /

Общая формула альдегидов имеет вид

Органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами, называют кетонами.

Очевидно, общая формула кетонов имеет вид

O
II
R1-C-R2

Карбонильную группу кетонов называют кетогруппой.

В простейшем кетоне - ацетоне - карбонильная группа связана с двумя метильными радикалами:

O
II
СН3-С-СН3

Номенклатура и изомерия

В зависимости от строения углеводородного радикала, связанного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды. В соответствии с номенклатурой ИЮПАК названия предельных альдегидов образуются из названия алкана с тем же числом атомов углерода в молекуле с помощью суффикса -аль.

Нумерацию атомов углерода главной цепи начинают с атома углерода альдегидной группы. Поэтому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее положение цифрой нет необходимости.

Наряду с систематической номенклатурой используют и тривиальные названия широко применяемых альдегидов. Эти названия, как правило, образованы от названий карбоно-вых кислот , соответствующих альдегидам.

Для названия кетонов по систематической номенклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углерода карбонильной группы (нумерацию следует начинать от ближайшего к кетогруппе конца цепи).

Для альдегидов характерен только один вид структурной изомерии - изомерия углеродного скелета, которая возможна с бутаналя, а для кетонов также и изомерия положения карбонильной группы (запишите структурные формулы изомеров бутанона и назовите их). Кроме этого, для них характерна и межклассовая изомерия (пропаналь и пропанон).

Физические свойства

В молекуле альдегида или кетона вследствие большей электроотрицательности атома кислорода по сравнению с углеродным атомом связь С=0 сильно поляризована за счет смещения электронной плотности п -связи к кислороду.

Альдегиды и кетоны - полярные вещества с избыточной электронной плотностью на атоме кислорода . Низшие члены ряда альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температуры кипения ниже, чем у соответствующих спиртов (см. табл. 5). Это связано с тем, что в молекулах альдегидов и кетонов в отличие от спиртов нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей. Низшие альдегиды имеют резкий запах, у альдегидов, содержащих от четырех до шести атомов углерода в цепи, неприятный запах, высшие альдегиды и кетоны обладают цветочными запахами и применяются в парфюмерии.

Химические свойства предельных альдегидов и кетонов

Наличие альдегидной группы в молекуле определяет характерные свойства альдегидов.

Реакции восстановления

Присоединение водорода к молекулам альдегидов происходит по двойной связи в карбонильной группе. Продуктом гидрирования альдегидов являются первичные спирты, кетонов - вторичные спирты. Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона - пропанол-2.

Гидрирование альдегидов - реакция восстановления, при которой понижается степень окисления атома углерода, входящего в карбонильную группу.

Реакции окисления

Альдегиды способны не только восстанавливаться, но и окисляться. При окислении альдегиды образуют карбоновые кислоты. Схематично этот процесс можно представить так:

Из пропионового альдегида (пропаналя), например, образуется пропионовая кислота:

Если поверхность сосуда, в котором проводится реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее тонкой ровной пленкой. Получается замечательное серебряное зеркало. Поэтому эту реакцию называют реакцией «серебряного зеркала». Ее широко используют для изготовления зеркал, серебрения украшений и елочных игрушек.

Окислителем альдегидов может выступать и свежеосаж-денный гидроксид меди(II). Окисляя альдегид, Сu2+ восстанавливается до Сu4. Образующийся в ходе реакции гидроксид меди(I) СuОН сразу разлагается на оксид меди(I) красного цвета и воду.

Эта реакция, так же как реакция «серебряного зеркала», используется для обнаружения альдегидов.

Кетоны не окисляются ни кислородом воздуха, ни таким слабым окислителем, как аммиачный раствор оксида серебра.

Реакции присоединения

Так как в состав карбонильной группы входит двойная связь, альдегиды и кетоны способны вступать в реакции присоединения. Связь С=0 полярна, на атоме углерода сосредоточен частичный положительный заряд. Альдегиды и кетоны вступают в реакции нуклеофильного присоединения. Такие реакции начинаются с взаимодействия атома углерода карбонильной группы с свободной электронной парой нуклеофильного реагента (Nu). Затем образовавшийся анион присоединяет протон или другой катион.

При нуклеофильном присоединении синильной кислоты в присутствии следов щелочей к альдегидам и кетонам образуются оксинитрилы (циангидрины). Альдегиды и метилкетоны вступают в реакцию нуклеофильного присоединения с гидросульфитом натрия.

Образующиеся при этом гидросульфитные производные альдегидов и кетонов при нагревании с минеральными кислотами или содой разлагаются с образованием первоначальных карбонильных соединений.

Альдегиды и кетоны способны присоединять магнийорганиче-ские соединения (реактивы Гриньяра). Эти соединения получают взаимодействием металлического магния с галогеналканом в абсолютном (обезвоженном) диэтиловом эфире.

Углеводородный радикал R магнийорганического соединения, на котором сосредоточен частичный отрицательный заряд, нукле-офильно присоединяется к атому углерода карбонильной группы, а остаток МgХ - к атому кислорода:

После разложения водным раствором кислоты полученного продукта образуется спирт.

Используя эту реакцию, из формальдегида можно получить первичный спирт, из любого другого альдегида - вторичный спирт, а из кетона - третичный спирт. Например, из уксусного альдегида и этилмагнийбромида может быть получен бутанол-2.

Альдегиды и кетоны реагируют с галогенами, вступая в реакцию замещения, даже в отсутствие освещения. При этом на галоген замещаются только атомы водорода при соседнем с карбонильной группой атоме углерода.

Чем же вызвана селективность галогенирования карбонильных соединений? Можно предположить, что причиной такой избирательности замещения является взаимное влияние групп атомов друг на друга. Действительно, альдегиды и кетоны, содержащие атомы водорода при соседнем с карбонильной группой атоме углерода, способны изомеризоваться в непредельные спирты - енолы. Реакция замещения по ионному механизму включает промежуточную стадию - образование енольной формы альдегида или кетона.

Альдегиды вступают в реакцию поликонденсации. Изучая фенолы , мы подробно рассмотрели взаимодействие метаналя (формальдегида) с фенолом (§ 18), приводящее к образованию фенол-формальдегидных смол.

Способы получения

Альдегиды и кетоны могут быть получены окислением или дегидрированием спиртов. Еще раз отметим, что при окислении или дегидрировании первичных спиртов могут быть получены альдегиды, а вторичных спиртов - кетоны.

Реакция Кучерова (гидратация алкинов) рассмотрена в § 13. Напомним, что из ацетилена в результате реакции получается уксусный альдегид, из гомологов ацетилена - кетоны:

Отдельные представители альдегидов и их значение

Формальдегид, (метаналь, муравьиный альдегид) НСНО - бесцветный газ с резким запахом и температурой кипения -21 °С, хорошо растворим в воде. Формальдегид ядовит! Раствор формальдегида в воде (40%) называют формалином и применяют для дезинфекции. В сельском хозяйстве формалин используют для протравливания семян, в кожевенной промышленности - для обработки кож. Формальдегид используют для получения уротропина - лекарственного вещества. Иногда спрессованный в виде брикетов уротропин применяют в качестве горючего (сухой спирт). Большое количество формальдегида расходуется при получении фенолформальдегидных смол и некоторых других веществ.

Уксусный альдегид (этаналь, ацетальдегид) СН 3 СНО - жидкость с резким, неприятным запахом и температурой кипения 21 °С, хорошо растворим в воде. Из уксусного альдегида в промышленных масштабах получают уксусную кислоту и ряд других веществ, он используется для производства различных пластмасс и ацетатного волокна. Уксусный альдегид ядовит!

1. Сколько атомов углерода содержится в молекуле простейшего альдегида? в молекуле простейшего кетона? Назовите эти вещества. Приведите синонимы их названий.

2. Назовите вещества, структурные формулы которых следующие:

3. Составьте структурные формулы изомеров бутаналя. К каким классам относятся эти вещества? Назовите их. Составьте уравнения реакций гидрирования этих соединений и укажите названия продуктов реакций.

4. Какой объем формальдегида (н. у.) необходимо подвергнуть гидрированию для получения 16 г метилового спирта?

5. Составьте уравнение реакции гидрирования диметилкето-на (ацетона). Какова молярная масса продукта реакции?

6. Запишите уравнение реакции «серебряного зеркала» с участием метаналя. Какие функциональные группы содержит молекула карбоновой кислоты - продукта этой реакции? Может ли она окисляться аммиачным раствором оксида серебра? Что может образовываться при этом? Проиллюстрируйте свой ответ уравнениями реакций.

7. В ходе реакции «серебряного зеркала» образовалась карбоновая кислота, имеющая относительную молекулярную массу, равную 88. Какие органические вещества могли быть реагентами в этой реакции? Используя структурные формулы, составьте возможные уравнения этой реакции.

8. Какая масса ацетальдегида необходима для восстановления 0,54 г серебра из его оксида? Какое количество гидроксида калия необходимо для нейтрализации образующейся при этом уксусной кислоты?

9. В одном из сосудов находится раствор ацетона, в другом - ацетальдегида. Предложите способы определения содержимого каждого сосуда.

10. Какие вещества образуются при нагревании гидроксида меди(ІІ) с пропаналем? Подтвердите ответ уравнением реакции. Каковы признаки этой реакции?

11. При сгорании 4,5 г органического вещества образовалось 3,36 л (н. у.) углекислого газа и 2,7 мл воды. Определите простейшую и истинную формулу вещества, если его плотность по воздуху равна 1,035. Объясните этимологию названий этого вещества. Каковы области его применения?

12*. Составьте уравнения реакций, которые могут протекать при бромировании пропаналя на свету. Какие продукты могут образовываться при этом? Назовите их. Какие продукты образуются при взаимодействии пропаналя с подкисленной бромной водой? Назовите их.

13*. При окислении 11,6 г кислородсодержащего органического соединения образовалось 14,8 г одноосновной карбоновой кислоты, при взаимодействии которой с избытком гидрокарбоната натрия выделилось 4,48 л (н. у.) газа. Определите строение исходного соединения.

14*. При окислении 1,18 г смеси муравьиного и уксусного альдегидов избытком аммиачного раствора оксида серебра образовалось 8,64 г осадка. Определите массовые доли альдегидов в смеси.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Альдегидами называют соединения, молекулы которых содержат карбонильную группу, соединенную с атомом водорода, т.е. общая формула альдегидов может быть записана как

где R – углеводородный радикал, который может быть разной степени насыщенности, например, предельный или ароматический.

Группу –СНО называют альдегидной.

Кетоны органические соединения, в молекулах которых содержится карбонильная группа, соединенная с двумя углеводородными радикалами. Общую формулу кетонов можно записать как:

где R и R’ – углеводородные радикалы, например, предельные (алкилы) или ароматические.

Гидрирование альдегидов и кетонов

Альдегиды и кетоны могут быть восстановлены водородом в присутствии катализаторов и нагревании до первичных и вторичных спиртов соответственно:

Окисление альдегидов

Альдегиды легко могут быть окислены даже такими мягкими окислителями, как гидроксид меди и аммиачный раствор оксида серебра.

При нагревании гидроксида меди с альдегидом происходит исчезновение изначального голубого окрашивания реакционной смеси, при этом образуется кирпично-красный осадок оксида одновалентной меди:

В реакции с аммиачным раствором оксида серебра вместо самой карбоновой кислоты образуется ее аммонийная соль, поскольку находящийся в растворе аммиак реагирует с кислотами:

Кетоны в реакцию с гидроксидом меди (II) и аммиачным раствором оксида серебра не вступают. По этой причине эти реакции являются качественными на альдегиды. Так реакция с аммиачным раствором оксида серебра при правильной методике ее проведения приводит к образованию на внутренней поверхности реакционного сосуда характерного серебряного зеркала.

Очевидно, что если мягкие окислители могут окислить альдегиды, то само собой это могут сделать и более сильные окислители, например, перманганат калия или дихромат калия. При использовании данных окислителей в присутствии кислот образуются карбоновые кислоты:

Химические свойства карбоновых кислот

Карбоновыми кислотами называют производные углеводородов, содержащие одну или несколько карбоксильных групп.

Карбоксильная групп а:

Как можно видеть, карбоксильная группа состоит из карбонильной группы –С(О)- , соединенной с гидроксильной группой –ОН.

В связи с тем, что к гидроксильной группе непосредственно прикреплена карбонильная, обладающая отрицательным индуктивным эффектом связь О-Н является более полярной, чем в спиртах и фенолах. По этой причине карбоновые кислоты обладают заметно более выраженными, чем спирты и фенолы, кислотными свойствами. В водных растворах они проявляют свойства слабых кислот, т.е. обратимо диссоциируют на катионы водорода (Н+) и анионы кислотных остатков:

Реакции образования солей

С образованием солей карбоновые кислоты реагируют с:

1) металлами до водорода в ряду активности:

2) аммиаком

3) основными и амфотерными оксидами:

4) основными и амфотерными гидроксидами металлов:

5) солями более слабых кислот – карбонатами и гидрокарбонатами, сульфидами и гидросульфидами, солями высших (с большим числом атомов углерода в молекуле) кислот:

Систематические и тривиальные названия некоторых кислот и их солей представлены в следующей таблице:

Формула кислоты Название кислоты тривиальное/систематическое Название соли тривиальное/систематическое
HCOOH муравьиная/ метановая формиат/ метаноат
CH 3 COOH уксусная/ этановая ацетат/ этаноат
CH 3 CH 2 COOH пропионовая/ пропановая пропионат/ пропаноат
CH 3 CH 2 CH 2 COOH масляная/ бутановая бутират/ бутаноат

Следует помнить и обратное: сильные минеральные кислоты вытесняют карбоновые кислоты из их солей как более слабые:

Реакции с участием ОН группы

Карбоновые кислоты вступают в реакцию этерификации с одноатомными и многоатомными спиртами в присутствии сильных неорганических кислот, при этом образуются сложные эфиры:

Данного типа реакции относятся к обратимым, в связи с чем с целью смещения равновесия в сторону образования сложного эфира их следует осуществлять, отгоняя более летучий сложный эфир при нагревании.

Обратный реакции этерификации процесс называют гидролизом сложного эфира:

Необратимо данная реакция протекает в присутствии щелочей, поскольку образующаяся кислота реагирует с гидроксидом металла с образованием соли:

Реакции замещения атомов водорода в углеводородном заместителе

При проведении реакций карбоновых с хлором или бромом в присутствии красного фосфора при нагревании происходит замещение атомов водорода при α-атоме углерода на атомы галогена:

В случае большей пропорции галоген/кислота может произойти и более глубокое хлорирование:

Реакции разрушения карбоксильной группы (декарбоксилирование)

Особые химические свойства муравьиной кислоты

Молекула муравьиной кислоты, несмотря на свои малые размеры, содержит сразу две функциональные группы:

В связи с этим она проявляет не только свойства кислот, но также и свойства альдегидов:

При действии концентрированной серной кислоты муравьиная кислота разлагается на воду и угарный газ.

5.1. Общая характеристика

Родственные классы альдегидов и кетонов содержат функциональную карбонильную группу и относятся к карбонильным соединениям. Для них также используется общее название оксосоединения, так как группа =О называется оксогруппой.

Альдегидами называют соединения, в которых карбонильная группа связана с органическим радикалом и атомом водорода; кетонами - карбонильные соединения с двумя органическими радикалами.

Группу -СН=О, входящую в состав альдегидов, называют альдегидной, соответственно группу в кетонах - кетонной, или кетогруппой.

В зависимости от природы органических радикалов альдегиды и кетоны могут принадлежать к алифатическому или ароматическому ряду; кетоны бывают смешанными (табл. 5.1).

В отличие от спиртов в молекулах альдегидов и кетонов отсутствуют связанные с атомами кислорода подвижные атомы водорода. В связи с этим альдегиды и кетоны не ассоциированы за счет образования водородных связей, но склонны к образованию водородных связей с молекулами воды и поэтому хорошо в ней растворяются (особенно первые члены гомологического ряда).

Таблица 5.1. Альдегиды и кетоны

5.2. Реакционные центры альдегидов и кетонов

sp 2 -Гибридизованный атом углерода карбонильной группы образует три σ-связи, лежащие в одной плоскости, и π-связь с атомом кислорода за счет негибридизованной p-орбитали. Вследствие различия в электроотрицательности атомов углерода и кислорода π-связь между ними сильно поляризована (рис. 5.1). В результате на атоме углерода карбонильной группы возникает частичный положительный заряд δ+, а на атоме кислорода - частичный отрицательный заряд δ-. Поскольку атом углерода электронодефицитен, он представляет собой центр для нуклеофильной атаки.

Распределение электронной плотности в молекулах альдегидов и кетонов с учетом передачи электронного влияния электроно-

Рис. 5.1. Электронное строение карбонильной группы

дефицитного атома углерода карбонильной группы по σ-связям представлено на схеме 5.1.

Схема 5.1. Реакционные центры в молекуле альдегидов и кетонов

В молекулах альдегидов и кетонов присутствует несколько реакционных центров:

Электрофильный центр - атом углерода карбонильной группы - предопределяет возможность нуклеофильной атаки;

Основный центр - атом кислорода - обусловливает возможность атаки протоном;

СН-кислотный центр, атом водорода которого обладает слабой протонной подвижностью и может, в частности, подвергаться атаке сильным основанием.

В целом альдегиды и кетоны обладают высокой реакционной способностью.

5.3. Нуклеофильное присоединение

Для альдегидов и кетонов наиболее характерны реакции нуклеофильного присоединения A N .

Общее описание механизма нуклеофильного присоединения A N

Легкость нуклеофильной атаки по атому углерода карбонильной группы альдегида или кетона зависит от величины частичного

положительного заряда на атоме углерода, его пространственной доступности и кислотно-основных свойств среды.

С учетом электронных эффектов групп, связанных с карбонильным атомом углерода, величина частичного положительного заряда δ+ на нем в альдегидах и кетонах убывает в следующем ряду:

Пространственная доступность карбонильного атома углерода уменьшается при замене водорода более объемистыми органиче- скими радикалами, поэтому альдегиды более реакционноспособны, чем кетоны.

Общая схема реакций нуклеофильного присоединения A N к карбонильной группе включает нуклеофильную атаку по карбонильному атому углерода, за которой следует присоединение электрофила к атому кислорода.

В кислой среде активность карбонильной группы, как правило, увеличивается, поскольку вследствие протонирования атома кислорода на атоме углерода возникает положительный заряд. Кислотный катализ используют обычно тогда, когда атакующий нуклеофил обладает низкой активностью.

По приведенному выше механизму осуществляется ряд важных реакций альдегидов и кетонов.

Многие свойственные альдегидам и кетонам реакции протекают в условиях организма, эти реакции представлены в последующих разделах учебника. В настоящей главе будут рассмотрены наиболее важные реакции альдегидов и кетонов, которые в обзорном виде приведены на схеме 5.2.

Присоединение спиртов. Спирты при взаимодействии с альдегидами легко образуют полуацетали. Полуацетали обычно не выделяют из-за их неустойчивости. При избытке спирта в кислой среде полуацетали превращаются в ацетали.

Применение кислотного катализатора при превращении полуацеталя в ацеталь становится понятным из приведенного ниже механизма реакции. Центральное место в нем занимает образование карбо- катиона (I), стабилизированного за счет участия неподеленной пары электронов соседнего атома кислорода (+M-эффект группы С 2 Н 5 О).

Реакции образования полуацеталей и ацеталей обратимы, поэтому ацетали и полуацетали легко гидролизуются избытком воды в кислой среде. В щелочной среде полуацетали устойчивы, так как алкоксидион является более трудно уходящей группой, чем гидроксид-ион.

Образование ацеталей часто используется как временная защита альдегидной группы.

Присоединение воды. Присоединение воды к карбонильной группе - гидратация - обратимая реакция. Степень гидратации альдегида или кетона в водном растворе зависит от строения субстрата.

Продукт гидратации, как правило, в свободном виде выделить с помощью перегонки не удается, так как он разлагается на исходные компоненты. Формальдегид в водном растворе гидратирован более чем на 99,9%, ацетальдегид - приблизительно наполовину, ацетон практически не гидратирован.

Формальдегид (муравьиный альдегид) обладает способностью свертывать белки. Его 40% водный раствор, называемый формалином, применяется в медицине как дезинфицирующее средство и консервант анатомических препаратов.

Трихлороуксусный альдегид (хлораль) гидратирован полностью. Электроноакцепторная трихлорометильная группа настолько стабилизирует хлоральгидрат, что это кристаллическое вещество отщепляет воду только при перегонке в присутствии дегидратирующих веществ - серной кислоты и др.

В основе фармакологического эффекта хлоральгидрата СС1 з СН(ОН )2 лежит специфическое действие на организм альдегидной группы, обусловливающее дезинфицирующие свойства. Атомы галогена усиливают ее действие, а гидратация карбонильной группы снижает токсичность вещества в целом.

Присоединение аминов и их производных. Амины и другие азотсодержащие соединения общей формулы NH 2 X (X = R, NHR) реагируют с альдегидами и кетонами в две стадии. Сначала образуются продукты нуклеофильного присоединения, которые затем вследствие неустойчивости отщепляют воду. В связи с этим данный процесс в целом классифицируют как реакцию присоединения-отщепления.

В случае первичных аминов получаются замещенные имины (их называют также основаниями Шиффа).

Имины - промежуточные продукты многих ферментативных процессов. Получение иминов проходит через стадию образования аминоспиртов, которые бывают относительно устойчивы, например при взаимодействии формальдегида с α-аминокислотами (см. 12.1.4).

Имины являются промежуточными продуктами получения аминов из альдегидов и кетонов путем восстановительного аминирования. Этот общий способ заключается в восстановлении смеси карбонильного соединения с аммиаком (или амином). Процесс протекает по схеме присоединения-отщепления с образованием имина, который затем восстанавливается в амин.

При взаимодействии альдегидов и кетонов с производными гидразина получаются гидразоны. Эту реакцию можно использовать для выделения альдегидов и кетонов из смесей и их хроматографической идентификации.

Основания Шиффа и другие подобные соединения легко гидролизуются водными растворами минеральных кислот с образованием исходных продуктов.

В большинстве случаев для реакций альдегидов и кетонов с азотистыми основаниями необходим кислотный катализ, ускоряющий дегидратацию продукта присоединения. Однако если слишком повысить кислотность среды, то реакция замедлится в результате превращения азотистого основания в нереакционноспособную сопряженную кислоту XNH 3+.

Реакции полимеризации. Эти реакции свойственны в основном альдегидам. При нагревании с минеральными кислотами полимеры альдегидов распадаются на исходные продукты.

Образование полимеров можно рассматривать как результат нуклеофильной атаки атомом кислорода одной молекулы альдегида карбонильного атома углерода другой молекулы. Так, при стоянии формалина выпадает в виде белого осадка полимер формальдегида - параформ.

5.4. Реакции конденсации

Наличие СН-кислотного центра в молекуле альдегида или кетона приводит к тому, что α-атомы водорода этих карбонильных соединений обладают некоторой протонной подвижностью. Под действием оснований такие протоны могут отщепляться с образованием соот- ветствующих карбанионов. Карбанионы играют роль нуклеофилов по отношению к карбонильному субстрату. Это обусловливает возможность осуществления реакций, в которых одна молекула в качестве нуклеофила присоединяется к карбонильной группе другой молекулы нейтрального карбонильного соединения. Такие процессы относятся к реакциям конденсации.

Конденсацией называют реакцию, приводящую к возникновению новой углерод-углеродной связи, причем из двух или нескольких относительно простых молекул образуется новая, более сложная молекула.

Так, в щелочной среде из двух молекул ацетальдегида образуется гидроксиальдегид с удвоенным числом атомов углерода.

Продукт реакции, содержащий гидроксильную и альдегидную группы, называется альдолем (от слов альд егид и алког оль), а сама реакция получила название альдольной конденсации, или альдольного присоединения.

Механизм альдольной конденсации. При действии основания в карбонильном соединении отщепляется протон из α-положения и образуется карбанион (I), в котором отрицательный заряд делокализован при участии карбонильной группы.

Анион (I) представляет собой сильный нуклеофил (на следующей стадии механизма он показан цветом), который присоединяется ко второй (неионизированной) молекуле карбонильного соединения. В результате такого взаимодействия возникает новая связь С-С и образуется промежуточный алкоксид-ион (II). В водной среде этот анион стабилизируется, отщепляя протон от молекулы воды, и превращается в конечный продукт - альдоль.

Реакция альдольного присоединения показана на примере пропаналя (цветом выделена молекула, присоединяющаяся к группе С=О другой молекулы); аналогичная реакция приведена на примере ацетона.

Продукт конденсации - альдоль - способен к отщеплению воды с образованием α,β-ненасыщенного карбонильного соединения. Обычно это происходит при повышенной температуре. В этом случае реакция в целом называется кротоновой конденсацией.

Реакции конденсации могут протекать и в смешанном варианте, с использованием разных карбонильных соединений, причем одно из них может и не содержать СН-кислотного центра, как, например, формальдегид и бензальдегид в следующих реакциях:

Альдольная конденсация - обратимая реакция; обратный процесс называется альдольным расщеплением (или ретроальдольной реакцией). Обе реакции происходят во многих биохимических процессах.

5.5. Восстановление и окисление

Восстановление альдегидов и кетонов осуществляют с помощью комплексных гидридов металлов LiAlH 4 , NaBH 4 . Реакция включает нуклеофильную атаку карбонильного атома углерода гидрид-ионом.

При последующем гидролизе образовавшегося алкоголята получается первичный или вторичный спирт.

Окисление альдегидов в карбоновые кислоты осуществляется под действием большинства окислителей, включая кислород воздуха. Кетоны в мягких условиях не окисляются.

Оксид серебра в виде аммиачного комплекса 2 OH (реактив Толленса) окисляет альдегиды в карбоновые кислоты, при этом выделяется металлическое серебро. Отсюда происходит название - реакция «серебряного зеркала».

Так же легко альдегиды окисляются гидроксидом меди(II) в щелочной среде.

Обе эти реакции часто используют как качественные для обнаружения альдегидной группы, хотя они неспецифичны по отношению к альдегидам: окислению указанными реагентами подвергаются, например, многоатомные фенолы, аминофенолы, ароматические амины, гидроксикетоны и другие легкоокисляющиеся соединения.

В молекулах альдегидов и кетонов отсутствуют атомы водорода, способные к образованию водородных связей. Поэтому их температуры кипения ниже, чем у соответствующих спиртов. Метаналь (формальдегид) — газ, альдегиды С 2 –C 5 и кетоны С 3 –С 4 — жидкости, высшие — твердые вещества.

Низшие гомологи растворимы в воде, благодаря образованию водородных связей между атомами водорода молекул воды и карбонильными атомами кислорода. С увеличением углеводородного радикала растворимость в воде падает.

Химические свойства

Для карбонильных соединений характерны реакции различных типов:

· присоединение по карбонильной группе;

· полимеризация;

· конденсация;

· восстановление и окисление.

Большинство реакций альдегидов и кетонов протекает по механизму нуклеофильного присоединения (A N) по связи С=О.
Реакционная способность в таких реакциях уменьшается от альдегидов к кетонам:

Это объясняется, главным образом, двумя факторами:

· углеводородные радикалы у группы С=О увеличивают пространственные препятствия присоединению к карбонильному атому углерода новых атомов или атомных групп;

· углеводородные радикалы за счет +I -эффекта уменьшают положительный заряд на карбонильном атоме углерода, что затрудняет присоединение нуклеофильного реагента.

I . Реакции присоединения

1. Присоединение водорода (восстановление ):

R-CH=O + H 2 t,Ni → R-CH 2 -OH (первичный спирт)

2. Присоединение циановодородной кислоты (синильной):

Эта реакция используется для удлинения углеродной цепи, а также для получения α-гидроксикислот R-CH(COOH)OH по схеме:

R-CH(CN)OH + H 2 O -> R-CH(COOH)OH + NH 3

CH 3 -CH=O + H-CN → CH 3 -CH(CN)-OH

CH 3 CH (CN )- OH циангидрин –яд! в ядрах косточек вишен, слив

3. Со спиртами – получают полуацетали и ацетали:

Полуацетали — соединения, в которых атом углерода связан с гидроксильной и алкоксильной (-OR) группами.
Взаимодействие полуацеталя с еще одной молекулой спирта (в присутствии кислоты) приводит к замещению полуацетального гидроксила на алкоксильную группу OR’ и образованию ацеталя:

Ацетали — соединения, в которых атом углерода связан с двумя алкоксильными

(-OR) группами.

4. Присоединение воды :


5. Присоединение реактива Гриньяра (используется для получения первичных спиртов, кроме метанола):

R-X (р р в диэтиловом эфире ) + Mg стружка → R-Mg-X ( реактив Гриньяра ) + Q

Здесь R – алкильный или арильный радикал; Х – это галоген.

HCH = O + CH 3 Mg Cl CH 3 CH 2 O Mg Cl (присоединение)

CH 3 CH 2 O Mg Cl + H 2 O CH 3 CH 2 OH + Mg (OH ) Cl (гидролиз)

6. Взаимодействие с аммиаком

II . Реакции окисления

1. Реакция серебряного зеркала – качественная реакция на альдегидную группу:


Кетоны не вступают в реакцию «серебряного зеркала». Они окисляются с трудом лишь при действии более сильных окислителей и повышенной температуре. При этом происходит разрыв С–С-связей (соседних с карбонилом) и образование смеси карбоновых кислот меньшей молекулярной массы.

2. Окисление гидроксидом меди( II ):

3. Аль­де­ги­ды могут быть окис­ле­ны до кис­лот бром­ной водой

III . Реакции замещения

Среди кислородсодержащих органических соединений огромное значение имеют целых два класса веществ, которые всегда изучают вместе за схожесть в строении и проявляемых свойствах. Это альдегиды и кетоны. Именно эти молекулы лежат в основе многих химических синтезов, а их строение достаточно интересное, чтобы стать предметом изучения. Рассмотрим подробнее, что же представляют собой эти классы соединений.

Альдегиды и кетоны: общая характеристика

С точки зрения химии, к классу альдегидов следует относить органические молекулы, содержащие кислород в составе функциональной группы -СОН, называемой карбонильной. Общая формула в этом случае будет выглядеть так: R-COH. По своей природе это могут быть как предельные, так и непредельные соединения. Также среди них встречаются и ароматические представители, наравне с алифатическими. Количество атомов углерода в радикальной цепи варьируется в достаточно широких пределах, от одного (формальдегид или метаналь) до нескольких десятков.

Кетоны также содержат карбонильную группу -СО, однако соединена она не с катионом водорода, а с другим радикалом, отличным или идентичным тому, что входит в цепь. Общая формула выглядит так: R-CO-R , . Очевидно, что альдегиды и кетоны схожи по наличию функциональной группы такого состава.

Кетоны также могут быть предельными и непредельными, да и проявляемые свойства сходны с близкородственным классом. Можно привести несколько примеров, иллюстрирующих состав молекул и отражающих принятые обозначения формул рассматриваемых веществ.

  1. Альдегиды: метаналь - НСОН, бутаналь - СН 3 -СН 2 -СН 2 -СОН, фенилуксусный - С 6 Н 5 -СН 2 -СОН.
  2. Кетоны: ацетон или диметилкетон - СН 3 -СО-СН 3 , метилэтилкетон - СН 3 -СО-С 2 Н 5 и другие.

Очевидно, что название данных соединений образуется двумя путями:

  • по рациональной номенклатуре согласно входящим в состав радикалам и классового суффикса -аль (для альдегидов) и -он (для кетонов);
  • тривиально, исторически сложившееся.

Если привести общую формулу для обоих классов веществ, то станет видно, что они являются изомерами друг другу: C n H 2n O. Для них же самих характерны следующие виды изомерии:


Чтобы различать между собой представителей обоих классов, используют качественные реакции, большинство из которых позволяют выявить именно альдегид. Так как химическая активность данных веществ несколько выше, благодаря наличию катиона водорода.

Строение молекулы

Рассмотрим, как же в пространстве выглядят альдегиды и кетоны. Строение их молекул можно отразить несколькими пунктами.

  1. Атом углерода, непосредственно входящий в функциональную группу, имеет sp 2 - гибридизацию, что позволяет части молекулы иметь плоскую пространственную форму.
  2. При этом полярность связи С=О сильна. Как более электроотрицательный, кислород забирает себе основную часть плотности, концентрируя на себе частично отрицательный заряд.
  3. В альдегидах связь О-Н является также сильно поляризованной, что делает атом водорода подвижным.

В результате получается, что подобное строение молекул позволяет рассматриваемым соединениям и окисляться, и восстанавливаться. Формула альдегида и кетона с перераспределенной электронной плотностью позволяет предсказать продукты реакций, в которых участвуют данные вещества.

История открытия и изучения

Как и многие органические соединения, выделить и изучить альдегиды и кетоны людям удалось лишь в XIX веке, когда виталистические взгляды полностью рухнули и стало понятно, что эти соединения могут образовываться синтетическим, искусственным путем, без участия живых существ.

Однако еще в 1661 году Р. Бойль сумел получить ацетон (диметилкетон), когда подвергал нагреванию ацетат кальция. Но подробно изучить это вещество и назвать его, определить систематическое положение среди других, он не смог. Лишь в 1852 году Уильямсон сумел довести это дело до конца, тогда и началась история подробного развития и накопления знаний о карбонильных соединениях.

Физические свойства

Рассмотрим, каковы физические свойства альдегидов и кетонов. Начнем с первых.

  1. Первый представитель метаналь по агрегатному состоянию - газ, следующие одиннадцать - жидкости, свыше 12 атомов углерода входят в состав твердых альдегидов нормального строения.
  2. Температура кипения: зависит от числа атомов С, чем их больше, тем она выше. При этом чем более разветвлена цепочка, тем ниже опускается значение температуры.
  3. Для жидких альдегидов показатели вязкости, плотности, преломления зависят также от числа атомов. Чем их больше, тем они выше.
  4. Газообразный и жидкие альдегиды растворяются в воде очень хорошо, однако твердые практически не могут этого делать.
  5. Запах представителей очень приятный, часто это ароматы цветов, духов, фруктов. Лишь те альдегиды, в которых количество атомов углерода равно 1-5, являются сильно и неприятно пахнущими жидкостями.

Если обозначать свойства кетонов, то также можно выделить главные.

  1. Агрегатные состояния: низшие представители - жидкости, более массивные - твердые соединения.
  2. Запах резкий, неприятный у всех представителей.
  3. Растворимость в воде хорошая у низших, в органических растворителях отличная у всех.
  4. Летучие вещества, данный показатель превышает таковой у кислот, спиртов.
  5. Температура кипения и плавления зависит от строения молекулы, сильно варьируется от количества атомов углерода в цепи.

Это основные свойства рассматриваемых соединений, которые относятся к группе физических.

Химические свойства

Самое важное, это с чем реагируют альдегиды и кетоны, химические свойства данных соединений. Поэтому их мы рассмотрим обязательно. Сначала разберемся с альдегидами.

  1. Окисление до соответствующих карбоновых кислот. Общий вид уравнения реакции: R-COH + [O] = R-COOH. Ароматические представители еще легче вступают в подобные взаимодействия, также они способны формировать в результате сложные эфиры, имеющие важное промышленное значение. В качестве окислителей используют: кислород, реактив Толленса, гидроксид меди (II) и другие.
  2. Альдегиды проявляют себя как сильные восстановители, при этом превращаясь в предельные одноатомные спирты.
  3. Взаимодействие со спиртами с образованием продуктов ацеталей и полуацеталей.
  4. Особые реакции - поликонденсации. В результате образуются фенолформальдегидные смолы, имеющие значение для химической промышленности.
  5. Несколько специфических реакций со следующими реактивами:
  • водно-спиртовая щелочь;
  • реактив Гриньяра;
  • гидросульфиты и прочие.

Качественной реакцией на данный класс веществ является реакция "серебряного зеркала". В результате нее образуется металлическое восстановленное серебро и соответствующая карбоновая кислота. Для нее необходим аммиачный раствор оксида серебра или реактив Толлинса.

Химические свойства кетонов

Спирты, альдегиды, кетоны являются схожими по проявляемым свойствам соединениями, так как все они кислородсодержащие. Однако уже на стадии окисления становится ясно, что спирты - самые активные и легко поддающиеся воздействию соединения. Кетоны же окислить труднее всего.

  1. Окислительные свойства. В результате образуются вторичные спирты.
  2. Гидрирование также приводит к упомянутым выше продуктам.
  3. Кето-енольная таутомерия - особое специфическое свойство кетонов принимать бета-форму.
  4. Реакции альдольной конденсации с образование бета-кетоспиртов.
  5. Также кетоны способны взаимодействовать с:
  • аммиаком;
  • синильной кислотой;
  • гидросульфитами;
  • гидразином;
  • ортокремниевой кислотой.

Очевидно, что реакции таких взаимодействий очень сложны, особенно те, которые являются специфическими. Это все основные особенности, которые проявляют альдегиды и кетоны. Химические свойства лежат в основе многих синтезов важных соединений. Поэтому знать природу молекул и их характер при взаимодействиях крайне необходимо в промышленных процессах.

Реакции присоединения альдегидов и кетонов

Мы уже рассмотрели данные реакции, однако не давали им такого названия. К присоединению можно отнести все взаимодействия, в результате которых активность проявила карбонильная группа. А точнее, подвижный атом водорода. Именно поэтому в данном вопросе преимущество отдается именно альдегидам, вследствие их лучшей реакционноспособности.

С какими веществами возможны реакции альдегидов и кетонов по нуклеофильному замещению? Это:

  1. Синильная кислота, образуются циангидрины - исходное сырье при синтезе аминокислот.
  2. Аммиак, амины.
  3. Спирты.
  4. Воду.
  5. Гидросульфат натрия.
  6. Реактив Гриньяра.
  7. Тиолы и другие.

Эти реакции имеют важное промышленное значение, поскольку продукты используются в разных областях жизнедеятельности людей.

Способы получения

Существует несколько основных методов, которыми синтезируют альдегиды и кетоны. Получение в лаборатории и промышленности можно выразить в следующих способах.

  1. Самым распространенным методом, в том числе и в лабораториях, является окисление соответствующих спиртов: первичных до альдегидов, вторичных до представителей кетонов. В качестве окислительного агента могут выступать: хроматы, ионы меди, перманганат калия. Общий вид реакции: R-OH + Cu (KMnO 4) = R-COH.
  2. В промышленности часто используют способ, основанный на окислении алкенов - оксосинтез. Основной агент синтез-газ, смесь СО 2 + Н 2 . Результатом становится альдегид с большим на один углерод числом атомов в цепи. R=R-R + СО 2 + Н 2 = R-R-R-COH.
  3. Окисление алкенов озоном - озонолиз. Результат также предполагает альдегид, но кроме этого еще и кетон в смеси. Если продукты мысленно соединить, убрав кислород, станет ясно, какой исходный алкен был взят.
  4. Реакция Кучерова - гидратация алкинов. Обязательный агент - соли ртути. Один из промышленных способов синтеза альдегидов и кетонов. R≡R-R + Hg 2+ + H 2 O = R-R-COH.
  5. Гидролиз дигалогенпроизводных углеводородов.
  6. Восстановление: карбоновых кислот, амидов, нитрилов, хлорангидридов, сложных эфиров. В результате образуется как альдегид, так и кетон.
  7. Пиролиз смесей карбоновых кислот над катализаторами в виде оксидов металлов. Смесь должна быть парообразной. Суть заключается в отщеплении между молекулами диоксида углерода и воды. В результате образуется альдегид или кетон.

Ароматические альдегиды и кетоны получают иными способами, так как данные соединения имеют ароматический радикал (фенил, например).

  1. По Фриделю-Крафтсу: в исходных реагентах ароматический углеводород и дигалогензамещенный кетон. Катализатор - ALCL 3 . В результате образуется ароматический альдегид или кетон. Другое название процесса - ацилирование.
  2. Окисление толуола действием разных агентов.
  3. Восстановлением ароматических карбоновых кислот.

Естественно, что в промышленности стараются использовать те методы, в которых исходное сырье как можно более дешевое, а катализаторы менее токсичные. Для синтеза альдегидов - это окисление алкенов кислородом.

Применение в промышленности и значение

Применение альдегидов и кетонов осуществляется в таких отраслях промышленности, как:

  • фармацевтика;
  • химический синтез;
  • медицина;
  • парфюмерная область;
  • пищевая промышленность;
  • лакокрасочное производство;
  • синтез пластмасс, тканей и прочее.

Можно обозначить еще не одну область, ведь ежегодно только формальдегида синтезируется приблизительно 6 млн т в год! Его 40% раствор именуется формалином и используется для хранения анатомических объектов. Он же идет на изготовление лекарственных препаратов, антисептиков и полимеров.

Уксусный альдегид, или этаналь, также массово производимый продукт. Количество ежегодного потребления в мире составляет около 4 млн т. Он - основа многих химических синтезов, при которых образуются важные продукты. Например:

  • уксусная кислота и ее ангидрид;
  • ацетат целлюлозы;
  • лекарства;
  • бутадиен - основа каучука;
  • ацетатное волокно.

Ароматические альдегиды и кетоны - это составная часть многих ароматизаторов, как пищевых, так и парфюмерных. Большинство из них имеют очень приятные цветочные, цитрусовые, травяные ароматы. Это позволяет изготовлять на их основе:

  • освежители воздуха различного рода;
  • туалетные и парфюмерные воды;
  • различные чистящие и моющие средства.

Некоторые из них являются ароматическими добавками к пище, разрешенными к употреблению. Их природное содержание в эфирных маслах, фруктах и смолах доказывают возможность подобного использования.

Отдельные представители

Такой альдегид, как цитраль, представляет собой жидкость с большой вязкостью и сильным ароматом лимона. В природе содержится как раз в эфирных маслах последнего. Также в составе эвкалипта, сорго, кебаба.

Хорошо известны области его применения:

  • педиатрия - понижение внутричерепного давления;
  • нормализация артериального давления у взрослых;
  • компонент лекарства для органов зрения;
  • составная часть многих душистых веществ;
  • противовоспалительное средство и антисептик;
  • сырье для синтеза ретинола;
  • ароматизатор в пищевых целях.

Последние материалы раздела:

Как сохранить очищенные зубчики чеснока?
Как сохранить очищенные зубчики чеснока?

Содержимое Многие овощеводы сталкиваются с проблемой - урожай вырастили, а как сохранить его не знают. Чесночные головки не исключение. Из большого...

История России от Рюрика до Путина!
История России от Рюрика до Путина!

Путинцев Севастьян, Митрафанов Вадим ГЕРОИ ВОЙНЫ 1812 года Пётр Иванович Багратион 1778 - 1834 Князь, генерал-майор. Из грузинского рода царей...

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...