§33. Нагревание воздуха и его температура

Вспомните

  • С помощью какого прибора измеряют температуру воздуха? Какие виды вращения Земли вам известны? Почему на Земле происходит смена дня и ночи?

Как нагревается земная поверхность и атмосфера. Солнце излучает огромное количество энергии. Однако атмосфера пропускает к земной поверхности только половину солнечных лучей. Часть их отражается, часть поглощается облаками, газами и частицами пыли (рис. 83).

Рис. 83. Расход солнечной энергии, поступающей на Землю

Пропуская солнечные лучи, атмосфера от них почти не нагревается. Нагревается же земная поверхность, и сама становится источником тепла. Именно от нее нагревается атмосферный воздух. Поэтому у земной поверхности воздух тропосферы теплее, чем на высоте. При подъеме вверх па каждый километр температура воздуха понижается на 6 "С. Высоко в горах из-за низкой температуры накопившийся снег не тает даже летом. Температура в тропосфере меняется не только с высотой, но и в течение определенных промежутков времени: суток, года.

Различия в нагревании воздуха в течение суток и года. Днем солнечные лучи освещают земную поверхность и прогревают ее, от нее нагревается и воздух. Ночью поступление солнечной энергии прекращается, и поверхность вместе с воздухом постепенно остывает.

Солнце наиболее высоко стоит над горизонтом в полдень. В это время поступает больше всего солнечной энергии. Однако самая высокая температура наблюдается через 2-3 ч после полудня, так как на передачу тепла от поверхности Земли к тропосфере требуется время. Самая низкая температура бывает перед восходом солнца.

Температура воздуха изменяется и по сезонам года. Вы уже знаете, что Земля движется вокруг Солнца по орбите и земная ось постоянно наклонена к плоскости орбиты. Из-за этого в течение года на одной и той же территории солнечные лучи падают на поверхность по-разному.

Когда угол падения лучей более отвесный, поверхность получает больше солнечной энергии, температура воздуха повышается и наступает лето (рис. 84).

Рис. 84. Падение солнечных лучей на земную поверхность в полдень 22 июня и 22 декабря

Когда солнечные лучи наклонены сильнее, поверхность нагревается слабо. Температура воздуха в это время понижается, и наступает зима. Самый теплый месяц в Северном полушарии - июль, а самый холодный - январь. В Южном полушарии - наоборот: самый холодный месяц года - июль, а самый теплый - январь.

По рисунку определите, как отличается угол падения солнечных лучей 22 июня и 22 декабря на параллелях 23,5° с. ш. и ю. ш.; на параллелях 66,5° с. ш. и ю. ш.

Подумайте, почему самые теплые и холодные месяцы - не июнь и декабрь, когда солнечные лучи имеют наибольший и наименьший углы падения на земную поверхность.

Рис. 85. Средние годовые температуры воздуха Земли

Показатели изменений температуры. Чтобы выявить общие закономерности изменения температуры, используют показатель средних температур: средних суточных, средних месячных, средних годовых (рис. 85). Например, для вычисления средней суточной температуры в течение суток несколько раз измеряют температуру, суммируют эти показатели и полученную сумму делят на количество измерений.

Определите:

  • среднюю суточную температуру по показателям четырех измерений за сутки:-8°С, -4°С,+3°С,+1°С;
  • среднюю годовую температуру Москвы, используя данные таблицы.

Таблица 4

Определяя изменение температуры, обычно отмечают ее самые высокие и самые низкие показатели.

    Разница между самыми высокими и самыми низкими показателями называется амплитудой температур.

Амплитуду можно определять для суток (суточная амплитуда), месяца, года. Например, если наибольшая температура за сутки равна +20°С, а наименьшая - +8°С, то суточная амплитуда составит 12°С (рис. 86).

Рис. 86. Суточная амплитуда температур

Определите, на сколько градусов годовая амплитуда в Красноярске больше, чем в Санкт-Петербурге, если средняя температура июля в Красноярске +19°С, а января- -17°С; в Санкт-Петербурге +18°С и -8°С соответственно.

На картах распределение средних температур отражают при помощи изотерм.

    Изотермы - это линии, соединяющие точки с одинаковой средней температурой воздуха за определенный промежуток времени.

Обычно показывают изотермы самого теплого и самого холодного месяцев года, т. е. июля и января.

Вопросы и задания

  1. Как происходит нагревание воздуха атмосферы?
  2. Как изменяется температура воздуха в течение суток?
  3. От чего зависит разница в нагревании поверхности Земли в течение года?

Исследования, проведенные на рубеже 1940-1950-х годов, позволили разработать ряд аэродинамических и технологических решений, обеспечивающих безопасное преодоление звукового барьера даже серийными самолетами. Тогда казалось, что покорение звукового барьера создает неограниченные возможности дальнейшего увеличения скорости полета. Буквально за несколько лет было облетано около 30 типов сверхзвуковых самолетов, из которых значительное число было запущено в серийное производство.

Многообразие использованных решений привело к тому, что многие проблемы, связанные с полетами на больших сверхзвуковых скоростях, были всесторонне изучены и решены. Однако встретились новые проблемы, значительно более сложные, нежели звуковой барьер. Они вызваны нагревом конструкции летательного аппарата при полете с большой скоростью в плотных слоях атмосферы. Это новое препятствие в свое время назвали тепловым барьером. В отличие от звукового новый барьер нельзя охарактеризовать постоянной, подобной скорости звука, поскольку он зависит как от параметров полета (скорости и высоты) и конструкции планера (конструктивных решений и использованных материалов), так и от оборудования самолета (системы кондиционирования, охлаждения и т.п.). Таким образом, в понятие «тепловой барьер» входит не только проблема опасного нагрева конструкции, но также такие вопросы, как теплообмен, прочностные свойства материалов, принципы конструирования, кондиционирование воздуха и т.п.

Нагрев самолета в полете происходит главным образом по двум причинам: от аэродинамического торможения воздушного потока и от тепловыделения двигательной установки. Оба эти явления составляют процесс взаимодействия между средой (воздухом, выхлопными газами) и обтекаемым твердым телом (самолетом, двигателем). Второе явление типично для всех самолетов, и связано оно с повышением температуры элементов конструкции двигателя, воспринимающих тепло от воздуха, сжатого в компрессоре, а также от продуктов сгорания в камере и выхлопной трубе. При полете с большими скоростями внутренний нагрев самолета происходит также и от воздуха, тормозящегося в воздушном канале перед компрессором. При полете на малых скоростях воздух, проходящий через двигатель, имеет относительно низкую температуру, вследствие чего опасный нагрев элементов конструкции планера не происходит. При больших скоростях полета ограничение нагрева конструкции планера от горячих элементов двигателя обеспечивается посредством дополнительного охлаждения воздухом низкой температуры. Обычно используется воздух, отводимый от воздухозаборника с помощью направляющей, отделяющей пограничный слой, а также воздух, захватываемый из атмосферы с помощью дополнительных заборников, размещенных на поверхности гондолы двигателя. В двух- контурных двигателях для охлаждения используется также воздух внешнего (холодного) контура.

Таким образом, уровень теплового барьера для сверхзвуковых самолетов определяется внешним аэродинамическим нагревом. Интенсивность нагрева поверхности, обтекаемой потоком воздуха, зависит от скорости полета. При малых скоростях этот нагрев так незначителен, что повышение температуры может не приниматься во внимание. При большой скорости воздушный поток обладает высокой кинетической энергией, в связи с чем повышение температуры может быть значительным. Касается это равным образом и температуры внутри самолета, поскольку высокоскоростной поток, заторможенный в воздухозаборнике и сжатый в компрессоре двигателя, приобретает настолько высокую температуру, что оказывается не в состоянии отводить тепло от горячих частей двигателя.

Рост температуры обшивки самолета в результате аэродинамического нагрева вызывается вязкостью воздуха, обтекающего самолет, а также его сжатием на лобовых поверхностях. Вследствие потери скорости частицами воздуха в пограничном слое в результате вязкостного трения происходит повышение температуры всей обтекаемой поверхности самолета. В результате сжатия воздуха температура растет, правда, лишь локально (этому подвержены главным образом носовая часть фюзеляжа, лобовое стекло кабины экипажа, а особенно передние кромки крыла и оперения), но зато чаще достигает значений, небезопасных для конструкции. В этом случае в некоторых местах происходит почти прямое соударение потока воздуха с поверхностью и полное динамическое торможение. В соответствии с принципом сохранения энергии вся кинетическая энергия потока при этом преобразуется в тепловую и в энергию давления. Соответствующее повышение температуры прямо пропорционально квадрату скорости потока до торможения (или, без учета ветра – квадрату скорости самолета) и обратно пропорционально высоте полета.

Теоретически, если обтекание имеет установившийся характер, погода безветренна и безоблачна и не происходит переноса тепла посредством излучения, то тепло не проникает внутрь конструкции, а температура обшивки близка к так называемой температуре адиабатического торможения. Зависимость ее от числа Маха (скорости и высоты полета) приведена в табл. 4.

В действительных условиях повышение температуры обшивки самолета от аэродинамического нагрева, т. е. разница между температурой торможения и температурой окружения, получается несколько меньшей ввиду теплообмена со средой (посредством излучения), соседними элементами конструкции и т. п. Кроме того, полное торможение потока происходит лишь в так называемых критических точках, расположенных на выступающих частях самолета, а приток тепла к обшивке зависит также от характера пограничного слоя воздуха (он более интенсивен для турбулентного пограничного слоя). Значительное снижение температуры происходит также при полетах сквозь облака, особенно когда они содержат переохлажденные капли воды и кристаллики льда. Для таких условий полета принимается, что снижение температуры обшивки в критической точке по сравнению с теоретической температурой торможения может достичь даже 20-40%.


Таблица 4. Зависимость температуры обшивки от числа Маха

Тем не менее общий нагрев самолета в полете со сверхзвуковыми скоростями (особенно на малой высоте) иногда так высок, что повышение температуры отдельных элементов планера и оборудования приводит либо к их разрушению, либо, как минимум, к необходимости изменения режима полета. Например, при исследованиях самолета ХВ-70А в полетах на высотах более 21 ООО м со скоростью М = 3 температура входных кромок воздухозаборника и передних кромок крыла составляла 580-605 К, а остальной части обшивки 470-500 К.Последствия повышения температуры элементов конструкции самолета до таких больших значений можно оценить в полной мере, если учесть тот факт, что уже при температурах около 370 К размягчается органическое стекло, повсеместно употребляемое для остекления кабин, кипит топливо, а обычный клей теряет прочность. При 400 К значительно снижается прочность дюралюминия, при 500 К происходит химическое разложение рабочей жидкости в гидросистеме и разрушение уплотнений, при 800 К теряют необходимые механические свойства титановые сплавы, при температуре выше 900 К плавятся алюминий и магний, а сталь размягчается. Повышение температуры приводит также к разрушению покрытий, из которых анодирование и хромирование могут использоваться до 570 К, никелирование-до 650 К, а серебрение-до 720 К.

После появления этого нового препятствия в увеличении скорости полета начались исследования с целью исключить либо смягчить его последствия. Способы защиты самолета от эффектов аэродинамического нагрева определяются факторами, препятствующими росту температуры. Кроме высоты полета и атмосферных условий, существенное влияние на степень нагрева самолета оказывают:

– коэффициент теплопроводности материала обшивки;

– величина поверхности (особенно лобовой) самолета; -время полета.

Отсюда следует, что простейшими способами уменьшения нагрева конструкции являются увеличение высоты полета и ограничение до минимума его продолжительности. Эти способы использовались в первых сверхзвуковых самолетах (особенно в экспериментальных). Благодаря довольно высокой теплопроводности и теплоемкости материалов, употребляемых для изготовления теплонапряженных элементов конструкции самолета, от момента достижения самолетом высокой скорости до момента разогрева отдельных элементов конструкции до расчетной температуры критической точки проходит обычно достаточно большое время. В полетах, продолжающихся несколько минут (даже на небольших высотах), разрушающие температуры не достигаются. Полет на больших высотах происходит в условиях низкой температуры (около 250 К) и малой плотности воздуха. Вследствие этого количество тепла, отдаваемого потоком поверхностям самолета, невелико, а теплообмен протекает дольше, что значительно смягчает остроту проблемы. Аналогичный результат дает ограничение скорости самолета на малых высотах. Например, во время полета над землей со скоростью 1600 км/ч прочность дюралюминия снижается только на 2%, а увеличение скорости до 2400 км/ч приводит к снижению его прочности на величину до 75% в сравнении с первоначальным значением.


Рис. 1.14. Распределение температуры в воздушном канале и в двигателе самолета «Конкорд» при полете с М = 2,2 (а) и температуры обшивки самолета ХВ-70А при полете с постоянной скоростью 3200 км/ч (б).


Однако необходимость обеспечения безопасных условий эксплуатации во всем диапазоне используемых скоростей и высот полета вынуждает конструкторов искать соответствующие технические средства. Поскольку нагрев элементов конструкции самолета вызывает снижение механических свойств материалов, возникновение термических напряжений конструкции, а также ухудшение условий работы экипажа и оборудования, такие технические средства, используемые в существующей практике, можно разделить на три группы. Они соответственно включают применение 1) теплостойких материалов, 2) конструктивных решений, обеспечивающих необходимую теплоизоляцию и допустимую деформацию деталей, а также 3) систем охлаждения кабины экипажа и отсеков оборудования.

В самолетах с максимальной скоростью М = 2,0-1-2,2 широко применяются сплавы алюминия (дюрали), которые характеризуются относительно высокой прочностью, малой плотностью и сохранением прочностных свойств при небольшом повышении температуры. Дюрали обычно дополняются стальными либо титановыми сплавами, из которых выполняются части планера, подвергающиеся наибольшим механическим или тепловым нагрузкам. Сплавы титана нашли применение уже в первой половине 50-х годов сначала в очень небольших масштабах (сейчас детали из них могут составлять до 30% массы планера). В экспериментальных самолетах с М ~ 3 становится необходимым применение жаропрочных стальных сплавов как основного конструкционного материала. Такие стали сохраняют хорошие механические свойства при высоких температурах, характерных для полетов с гиперзвуковыми скоростями, но их недостатками являются высокая стоимость и большая плотность. Эти недостатки в определенном смысле ограничивают развитие высокоскоростных самолетов, поэтому ведутся исследования и других материалов.

В 70-х годах осуществлены первые опыты применения в конструкции самолетов бериллия, а также композиционных материалов на базе волокон бора или углерода. Эти материалы пока имеют высокую стоимость, но вместе с тем для них характерны малая плотность, высокие прочность и жесткость, а также значительная термостойкость. Примеры конкретных применений этих материалов при постройке планера приведены в описаниях отдельных самолетов.

Другим фактором, существенно влияющим на работоспособность нагреваемой конструкции самолета, является эффект так называемых термических напряжений. Возникают они в результате температурных перепадов между внешними и внутренними поверхностями элементов, а особенно между обшивкой и внутренними элементами конструкции самолета. Поверхностный нагрев планера приводит к деформации его элементов. Например, может произойти такое коробление обшивки крыла, которое приведет к изменению аэродинамических характеристик. Поэтому во многих самолетах используется паяная (иногда клееная) многослойная обшивка, которая отличается высокой жесткостью и хорошими изоляционными свойствами, либо применяются элементы внутренней конструкции с соответствующими компенсаторами (например, в самолете F-105 стенки лонжерона изготовляются из гофрированного листа). Известны также опыты охлаждения крыла с помощью топлива (например, у самолета Х-15), протекающего под обшивкой на пути от бака до форсунок камеры сгорания. Однако при высоких температурах топливо обычно подвергается коксованию, поэтому такие опыты можно считать неудачными.

Сейчас исследуются различные методы, среди которых нанесение изоляционного слоя из тугоплавких материалов путем плазменного напыления. Другие считавшиеся перспективными методы не нашли применения. Среди прочего предлагалось использовать «защитный слой», создаваемый путем вдува газа на обшивку, охлаждение «выпотеванием» посредством подачи на поверхность сквозь пористую обшивку жидкости с высокой температурой испарения, а также охлаждение, создаваемое плавлением и уносом части обшивки (абляционные материалы).

Довольно специфичной и вместе с тем очень важной задачей является поддержание соответствующей температуры в кабине экипажа и в отсеках оборудования (особенно электронного), а также температуры топливных и гидравлических систем. В настоящее время эта проблема решается путем использования высокопроизводительных систем кондиционирования, охлаждения и рефрижерации , эффективной теплоизоляции, применения рабочих жидкостей гидросистем с высокой температурой испарения и т.д.

Проблемы, связанные с тепловым барьером, должны решаться комплексно. Любой прогресс в этой области отодвигает барьер для данного типа самолетов в сторону большей скорости полета, не исключая его как такового. Однако стремление к еще большим скоростям приводит к созданию еще более сложных конструкций и оборудования, требующих применения более качественных материалов. Это заметным образом отражается на массе, закупочной стоимости и на затратах по эксплуатации и обслуживанию самолета.

Из приведенных в табл. 2 данных самолетов-истребителей видно, что в большинстве случаев рациональной считалась максимальная скорость 2200-2600 км/ч. Лишь в некоторых случаях считают, что скорость самолета должна превосходить М ~ 3. К самолетам, способным развивать такие скорости, относятся экспериментальные машины Х-2, ХВ-70А и Т. 188, разведывательный SR-71, а также самолет Е-266.

1* Рефрижерацией называется принудительный перенос тепла от холодного источника к среде с высокой температурой при искусственном противодействии естественному направлению движения тепла (от теплого тела к холодному, когда имеет место процесс охлаждения). Простейшим рефрижератором является бытовой холодильник.

Проходят через прозрачную атмосферу, не нагревая ее, они достигают земной поверхности, нагревают ее, а от нее в последующем нагревается воздух.

Степень нагрева поверхности, а значит и воздуха, зависят, прежде всего, от широты местности.

Но в каждой конкретной точке она (t о) будет определяться также целым рядом факторов, среди которых основными являются:

А: высота над уровнем моря;

Б: подстилающая поверхность;

В: удаленность от побережий океанов и морей.

А – Поскольку нагревание воздуха происходит от земной поверхности, то чем меньше абсолютные высоты местности, тем выше температура воздуха (на одной широте). В условиях ненасыщенного водяными парами воздуха наблюдается закономерность: при подъеме на каждые 100 метров высоты температура (t о) уменьшается на 0,6 о С.

Б – Качественные характеристики поверхности.

Б 1 – разные по цвету и структуре поверхности по разному поглощают и отражают солнечные лучи. Максимальная отражательная способность характерна для снега и льда, минимальная для темно окрашенных почв и горных пород.

Освещение Земли солнечными лучами в дни солнцестояний и равноденствий.

Б 2 – разные поверхности имеют разную теплоемкость и теплоотдачу. Так водная масса Мирового океана, занимающего 2/3 поверхности Земли, из-за высокой теплоемкости очень медленно нагревается и очень медленно охлаждается. Суша быстро нагревается и быстро охлаждается т.е., чтобы нагреть до одинаковой t о 1 м 2 суши и 1 м 2 водной поверхности, надо затратить разное количество энергии.

В – от побережий в глубь материков количество водного пара в воздухе уменьшается. Чем более прозрачна атмосфера, тем меньше рассеивается в ней солнечных лучей, и все солнечные лучи достигают поверхности Земли. При наличии большого количества водяного пара в воздухе, капельки воды отражают, рассеивают, поглощают солнечные лучи и далеко не все они достигаются поверхности планеты, нагревание ее при этом уменьшается.

Самые высокие температуры воздуха зафиксированы в районах тропических пустынь. В центральных районах Сахары почти 4 месяца t о воздуха в тени составляет более 40 о С. В то же время на экваторе, где угол падения солнечных лучей самый большой, температура не бывает выше +26 о С.

С другой стороны, Земля как нагретое тело излучает энергию в космос в основном в длинноволновом инфракрасном спектре. Если земная поверхность укутана «одеялом» облаков, то не все инфракрасные лучи уходят с планеты, так как облака их задерживают, отражая обратно к земной поверхности.

При ясном небе, когда водяных паров в атмосфере мало, инфракрасные лучи, испускаемые планетой свободно уходят в космос, при этом происходит выхолаживание земной поверхности, которая остывает и тем самым снижается температура воздуха.

Литература

  1. Зубащенко Е.М. Региональная физическая география. Климаты Земли: учебно-методическое пособие. Часть 1. / Е.М. Зубащенко, В.И. Шмыков, А.Я. Немыкин, Н.В. Полякова. – Воронеж: ВГПУ, 2007. – 183 с.
2005-08-16

В целом ряде случаев можно значительно уменьшить капитальные и эксплуатационные затраты, обеспечив автономное отопление помещений теплым воздухом на основе применения теплогенераторов, работающих на газе или жидком топливе. В таких агрегатах нагревается не вода, а воздух - свежий приточный, рециркуляционный или смешанный. Такой способ особенно эффективен для обеспечения автономного отопления производственных помещений, выставочных павильонов, мастерских, гаражей, станций технического обслуживания, автомобильных моек, киностудий, складов, общественных зданий, спортзалов, супермаркетов, теплиц, оранжерей, животноводческих комплексов, птицеферм и т.п.


Преимущества воздушного отопления

Преимуществ воздушного способа отопления перед традиционным водяным в больших по объему помещениях много, перечислим лишь основные:

  1. Экономичность. Тепло производится непосредственно в нагреваемом помещении и практически целиком расходуется по назначению. Благодаря прямому сжиганию топлива без промежуточного теплоносителя достигается высокий тепловой КПД всей системы отопления: 90-94% — для рекуперативных нагревателей и практически 100% — для систем прямого нагрева. Применение программируемых термостатов обеспечивает возможность дополнительной экономии от 5 до 25 % тепловой энергии за счет функции «дежурного режима» — автоматического поддержания температуры в помещении в нерабочее время на уровне +5-7°С.
  2. Возможность «включить» приточную вентиляцию. Ни для кого не секрет, что сегодня на большинстве предприятий приточная вентиляция не работает должным образом, что значительно ухудшает условия работы людей и влияет на производительность труда. Теплогенераторы или системы прямого нагрева прогревают воздух на ∆t до 90°С — этого вполне достаточно для того, чтобы «заставить» работать приточную вентиляцию даже в условиях Крайнего Севера. Таким образом, воздушное отопление подразумевает собой не только экономическую эффективность, но и улучшение экологической обстановки и условий труда.
  3. Малая инерционность. Агрегаты систем воздушного отопления в считанные минуты выходят на рабочий режим, а за счет высокой оборачиваемости воздуха, помещение полностью прогревается всего за несколько часов. Это дает возможность оперативно и гибко маневрировать при изменении потребностей в тепле.
  4. Отсутствие промежуточного теплоносителя позволяет отказаться от строительства и содержания малоэффективной для больших помещений системы водяного отопления, котельной, теплотрасс и станции водоподготовки. Исключаются потери в теплотрассах и их ремонт, что позволяет резко снизить эксплуатационные расходы. В зимнее время отсутствует риск размораживания калориферов и системы отопления в случае продолжительного отключения системы. Охлаждение даже до глубокого «минуса» не приводит к размораживанию системы.
  5. Высокая степень автоматизации позволяет вырабатывать ровно то количество тепла, в котором есть необходимость. В сочетании с высокой надежностью газового оборудования это значительно повышает безопасность системы отопления, а для ее эксплуатации достаточно минимума обслуживающего персонала.
  6. Малые затраты. Способ отопления крупных помещений при помощи теплогенераторов один из самых дешевых и быстро реализуемых. Капитальные затраты на строительство или реконструкцию воздушной системы, как правило, значительно ниже расходов на организацию водяного или лучистого отопления. Срок окупаемости капитальных затрат обычно не превышает одного-двух отопительных сезонов.

В зависимости от решаемых задач, в системах воздушного отопления могут применяться нагреватели различного типа. В этой статье мы рассмотрим только агрегаты, работающие без применения промежуточного теплоносителя — рекуперативные воздухонагреватели (с теплообменником и отводом продуктов сгорания наружу) и системы прямого нагрева воздуха (газовые смесительные воздухонагреватели).

Рекуперативные воздухонагреватели

В агрегатах этого типа топливо, смешанное с необходимым количеством воздуха, подается горелкой в камеру сгорания. Образовавшиеся продукты горения проходят через двух- или трехходовой теплообменник. Тепло, полученное при сгорании топлива, передается нагреваемому воздуху через стенки теплообменника, а дымовые газы через дымоход отводятся наружу (рис. 1) — именно поэтому их называют теплогенераторами «непрямого нагрева».

Рекуперативные воздухонагреватели могут быть использованы не только непосредственно для отопления, но и в составе системы приточной вентиляции, а также для технологического нагрева воздуха. Номинальная тепловая мощность таких систем от 3 кВт до 2 МВт. Подача нагреваемого воздуха в помещение осуществляется через встроенный или выносной нагнетающий вентилятор, что дает возможность использования агрегатов как для прямого подогрева воздуха с выдачей его через жалюзийные решетки, так и с воздуховодами.

Омывая камеру сгорания и теплообменник, воздух нагревается и направляется либо непосредственно в отапливаемое помещение через расположенные в верхней части жалюзийные воздухораспределительные решетки, либо распределяется по системе воздуховодов. На лицевой части теплогенератора расположена автоматизированная блочная горелка (рис. 2).

Теплообменники современных воздухонагревателей, как правило, изготовлены из нержавеющей стали (топка — из жаропрочной стали) и служат от 5 до 25 лет, после которых могут быть отремонтированы или заменены. КПД современных моделей достигает 90-96 %. Главное преимущество рекуперативных воздухонагревателей — их универсальность.

Они могут работать на природном или сжиженном газе, дизельном топливе, нефти, мазуте или отработанном масле — стоит только поменять горелку. Существует возможность работы со свежим воздухом, с подмесом внутреннего и в режиме полной рециркуляции. Такая система позволяет некоторые вольности, например, изменять расход нагреваемого воздуха, «на ходу» перераспределять потоки нагретого воздуха в разные ветви воздуховодов при помощи специальных клапанов.

Летом рекуперативные воздухонагреватели могут работать в режиме вентиляции. Монтируются агрегаты как в вертикальном, так и в горизонтальном положении, на полу, стене, или встраиваются в секционную венткамеру в качестве секции нагревателя.

Рекуперативные воздухонагреватели могут быть использованы даже для отопления помещений высокой категории комфортности, в случае если сам агрегат будет вынесен за пределы зоны непосредственного обслуживания.

Основные недостатки:

  1. Большой и сложный теплообменник увеличивает стоимость и вес системы, по сравнению с воздухонагревателями смесительного типа;
  2. Нуждаются в дымовой трубе и отводе конденсата.

Системы прямого нагрева воздуха

Современные технологии позволили добиться такой чистоты сжигания природного газа, что появилась возможность не отводить продукты сгорания «в трубу», а использовать их для прямого нагрева воздуха в системах приточной вентиляции. Газ, поступающий на горение, полностью сгорает в потоке нагреваемого воздуха и, смешиваясь с ним, отдает ему все тепло.

Этот принцип реализован в ряде аналогичных конструкций рамповой горелки в США, Англии, Франции и России и с успехом используется с 60-х годов XX века на многих предприятиях России и за рубежом. Основанные на принципе сверхчистого сжигания природного газа непосредственно в потоке нагреваемого воздуха газовые смесительные воздухонагреватели типа STV (STARVEINE — «звездный ветер») производятся с номинальной тепловой мощностью от 150 кВт до 21 МВт.

Сама технология организации горения, а также высокая степень разбавления продуктов горения, позволяют получить в установках чистый теплый воздух в соответствии со всеми действующими нормами, практически не содержащий вредных примесей (не более 30% ПДК). Воздухонагреватели STV (рис. 3) состоят из модульного горелочного блока, расположенного внутри корпуса (участка воздуховода), газовой линии DUNGS (Германия) и системы автоматики.

Корпус, как правило, оснащен гермодверью для удобства обслуживания. Горелочный блок, в зависимости от требуемой тепловой мощности, компонуется из необходимого количества горелочных секций разной конфигурации. Автоматика нагревателей обеспечивает плавный автоматический пуск по циклограмме, контроль параметров безопасной работы и возможность плавного регулирования тепловой мощности (1:4), что позволяет автоматически поддерживать необходимую температуру воздуха в отапливаемом помещении.

Применение газовых смесительных воздухонагревателей

Главное их предназначение — прямой нагрев свежего приточного воздуха, подаваемого в производственные помещения для компенсации вытяжной вентиляции и улучшения, таким образом, условий работы людей.

Для помещений с большой кратностью воздухообмена возникает целесообразность совмещения системы приточной вентиляции и системы отопления — в этом плане у систем прямого нагрева нет конкурентов по соотношению цена/качество. Газовые смесительные воздухонагреватели предназначены для:

  • автономного воздушного отопления помещений различного назначения с большим воздухообменом (К 򖅁,5);
  • нагрева воздуха в воздушно-тепловых завесах отсечного типа, возможно совмещение с системами отопления и приточной вентиляции;
  • систем предпускового подогрева двигателей автомобилей на неотапливаемых стоянках;
  • отогрева и оттайки вагонов, цистерн, автомобилей, сыпучих материалов, нагрева и сушки изделий перед покраской или другими видами обработки;
  • прямого нагрева атмосферного воздуха или сушильного агента в различных установках технологического нагрева и сушки, например, сушка зерна, травы, бумаги, текстиля, древесины; применения в камерах окраски и сушки после покраски и т.п.

Размещение

Смесительные нагреватели могут быть встроены в воздушные каналы систем приточной вентиляции и тепловых завес, в воздуховоды сушильных установок — как на горизонтальных, так и на вертикальных участках. Могут монтироваться на полу или площадке, под потолком или на стене. Размещаются, какправило, в приточно-вентиляционных камерах, но возможна их установка и непосредственно в отапливаемом помещении (в соответствии с категорией).

При дополнительном оборудовании соответствующими элементами могут обслуживать помещения категорий А и Б. Рециркуляция внутреннего воздуха через смесительные воздухонагреватели нежелательна — возможно существенное снижение уровня кислорода в помещении.

Сильные стороны систем прямого нагрева

Простота и надежность, низкая себестоимость и экономичность, возможность нагрева до высоких температур, высокая степень автоматизации, плавное регулирование, не нуждаются в устройстве дымохода. Прямой нагрев — самый экономичный способ — КПД системы равен 99,96 %. Уровень удельных капитальных затрат на систему отопления на базе установки прямого нагрева, совмещенной с приточной вентиляцией, самый низкий при высочайшей степени автоматизации.

Воздухонагреватели всех типов оснащены системой автоматики безопасности и управления, обеспечивающей плавный пуск, поддержание режима нагрева и отключение в случае возникновения аварийных ситуаций. В целях энергосбережения возможно оснащение воздухонагревателей автоматикой регулирования с учетом наружной и контролем внутренней температур, функциями суточного и недельного режимов программирования нагрева.

Возможно также включение параметров системы отопления, состоящей из многих отопительных агрегатов, в систему централизованного управления и диспетчеризации. В этом случае оператор-диспетчер будет иметь оперативную информацию о работе и состоянии отопительных агрегатов, наглядно отображенной на мониторе компьютера, а также управлять режимом их работы непосредственно из удаленного диспетчерского пункта.

Мобильные теплогенераторы и тепловые пушки

Предназначены для временного применения — на стройках, для отопления в межсезонные периоды, технологического нагрева. Мобильные теплогенераторы и тепловые пушки работают на пропане (сжиженном баллонном газе), дизельном топливе или керосине. Могут быть как прямого нагрева, так и с отводом продуктов сгорания.

Типы систем автономного воздушного отопления

Для автономного теплоснабжения различных помещений применяются различные типы систем воздушного отопления — с централизованным распределением тепла и децентрализованные; системы, работающие полностью на приток свежего воздуха, или с полной/частичной рециркуляцией внутреннего воздуха.

В децентрализованных системах воздушного отопления нагрев и циркуляция воздуха в помещении осуществляются автономными теплогенераторами, расположенными в различных участках или рабочих зонах — на полу, стене и под крышей. Воздух из нагревателей подается непосредственно в рабочую зону помещения. Иногда для лучшего распределения тепловых потоков теплогенераторы оснащают небольшими (локальными) системами воздуховодов.

Для агрегатов в таком исполнении характерна минимальная мощность электродвигателя вентилятора, поэтому децентрализованные системы более экономичны в плане расхода электроэнергии. Возможно также использование воздушно-тепловых завес как части системы воздушного отопления или приточной вентиляции.

Возможность локального регулирования и использования теплогенераторов по мере необходимости — по зонам, в различное время— дает возможность значительного снижения расходов на топливо. Однако капитальные затраты на реализацию данного способа несколько выше. В системах с централизованным распределением тепла используются воздушно-отопительные агрегаты; вырабатываемый ими теплый воздух поступает в рабочие зоны по системе воздуховодов.

Установки, как правило, встраиваются в существующие венткамеры, но допускается возможность размещения их непосредственно в обогреваемом помещении — на полу или на площадке.

Применение и размещение, подбор оборудования

У каждого из типов вышеперечисленных отопительных агрегатов есть свои неоспоримые преимущества. И нет готового рецепта, в каком случае какой из них целесообразнее — это зависит от многих факторов: величины воздухообмена в соотнесении с величиной теплопотерь, категории помещения, наличия свободного места для размещения оборудования, от финансовых возможностей. Попытаемся сформировать наиболее общие принципы целесообразного подбора оборудования.

1. Системы отопления для помещений с небольшим воздухообменом (Квоздухообмена ≤򖅀,5-1)

Суммарная тепловая мощность теплогенераторов в этом случае принимается практически равной количеству тепла, необходимого для компенсации теплопотерь помещения, вентиляция сравнительно мала, поэтому здесь целесообразно применение системы отопления на основе теплогенераторов непрямого нагрева с полной или частичной рециркуляцией внутреннего воздуха помещения.

Вентиляция в таких помещениях может быть естественной или с подмесом уличного воздуха к рециркулирующему. Во втором случае мощность нагревателей увеличивают на величину, достаточную для нагрева свежего приточного воздуха. Такая система отопления может быть местной, с напольными или настенными теплогенераторами.

При невозможности размещения установки в отапливаемом помещении либо при организации обслуживания нескольких помещений можно применить систему централизованного типа: теплогенераторы расположить в венткамере (пристрое, на антресолях, в соседнем помещении), а тепло распределять по воздуховодам.

В рабочее время теплогенераторы могут работать в режиме частичной рециркуляции, попутно нагревая подмешиваемый приточный воздух, в нерабочее можно некоторые из них отключать, а оставшиеся переводить на экономичный дежурный режим +2-5°С с полной рециркуляцией.

2. Системы отопления для помещений с большой кратностью воздухообмена, постоянно нуждающиеся в подаче больших объемов приточного свежего воздуха (Квоздухообмена 򖅂)

В этом случае количество тепла, необходимое для нагрева приточного воздуха, может уже в несколько раз превышать количество тепла, необходимое для компенсации теплопотерь. Здесь наиболее целесообразно и экономично совмещение системы воздушного отопления с системой приточной вентиляции. Система отопления может строиться на основе установок прямого нагрева воздуха, или на основе применения рекуперативных теплогенераторов в исполнении с повышенной степенью нагрева.

Суммарная тепловая мощность нагревателей должна быть равна сумме тепловой потребности на нагрев приточного воздуха и тепла, необходимого для компенсации теплопотерь. В системах прямого нагрева происходит нагрев 100 % уличного воздуха, обеспечивая подачу необходимого объема приточного воздуха.

В рабочее время они нагревают воздух от уличной до расчетной температуры +16-40°С (с учетом перегрева для обеспечения компенсации теплопотерь). С целью экономии в нерабочее время можно выключать часть нагревателей для снижения расхода приточного воздуха, а оставшиеся перевести на дежурный режим поддержания +2-5°С.

Рекуперативные теплогенераторы в дежурном режиме позволяют обеспечить дополнительную экономию за счет перевода их в режим полной рециркуляции. Наименьшие капитальные затраты при организации систем отопления централизованного типа — при применении как можно более крупных нагревателей. Капитальные затраты на газовые смесительные воздухонагреватели STV могут составить от 300 до 600 руб/кВт установленной тепловой мощности.

3. Комбинированные системы воздушного отопления

Оптимальный вариант для помещений со значительным воздухообменом в рабочее время при односменном режиме работы, либо прерывистом рабочем цикле — когда разница в необходимости подачи приточного воздуха и тепла в течение дня значительна.

В этом случае целесообразно раздельное функционирование двух систем: дежурного отопления и приточной вентиляции, совмещенной с системой отопления (догрева). При этом в отапливаемом помещении или в венткамерах устанавливаются рекуперативные теплогенераторы для поддержания только дежурного режима с полной рециркуляцией (при расчетной наружной температуре).

Система приточной вентиляции, совмещенная с системой отопления, обеспечивает нагрев необходимого объема свежего приточного воздуха до +16-30°С и догрев помещения до необходимой рабочей температуры и в целях экономии включается только в рабочее время.

Строится она либо на основе рекуперативных теплогенераторов (с повышенной степенью нагрева), либо на основе мощных систем прямого нагрева (что дешевле в 2-4 раза). Возможна комбинация приточной системы догрева с существующей системой водяного отопления (может оставаться дежурной), вариант применим также для стадийной модернизации существующей системы отопления и вентиляции.

При таком способе эксплуатационные расходы будут наименьшими. Таким образом, применяя воздухонагреватели различных типов в различных комбинациях, можно решить одновременно обе задачи — и отопление, и приточную вентиляцию.

Примеров применения систем воздушного отопления очень много и возможности комбинации их чрезвычайно разнообразны. В каждом случае необходимо провести тепловые расчеты, учесть все условия применения и выполнить несколько вариантов подбора оборудования, сравнивая их по целесообразности, величине капитальных затрат и эксплуатационных расходов.

Человечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва,...

Энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности .

Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.

Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия , которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.

Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С?.. Какая нужна мощность источника тепла, чтобы сделать это за 1 час?.. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!

Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов. Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!

Количество теплоты при различных физических процессах.

Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.

Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q , подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.

1. Твердое тело, имеющее температуру T1 , нагреваем до температуры Tпл , затрачивая на этот процесс количество теплоты равное Q1 .

2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2— Q1 .

3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп , затрачивая на это количество теплоты равное Q3 -Q2 .

4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4 -Q3 .

5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2 . При этом затраты количества теплоты составят Q5 -Q4 . (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)

Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5 , переводя вещество через три агрегатных состояния.

Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5 , пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до температуры Т1 . Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.

Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.

Главные формулы теплопередачи.

Формулы очень просты.

Количество теплоты Q в Дж рассчитывается по формулам:

1. Со стороны потребления тепла, то есть со стороны нагрузки:

1.1. При нагревании (охлаждении):

Q = m * c *(Т2 -Т1 )

m масса вещества в кг

с – удельная теплоемкость вещества в Дж/(кг*К)

1.2. При плавлении (замерзании):

Q = m * λ

λ удельная теплота плавления и кристаллизации вещества в Дж/кг

1.3. При кипении, испарении (конденсации):

Q = m * r

r удельная теплота газообразования и конденсации вещества в Дж/кг

2. Со стороны производства тепла, то есть со стороны источника:

2.1. При сгорании топлива:

Q = m * q

q удельная теплота сгорания топлива в Дж/кг

2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):

Q =t *I *U =t *R *I ^2=(t/ R) *U ^2

t время в с

I действующее значение тока в А

U действующее значение напряжения в В

R сопротивление нагрузки в Ом

Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности (c , λ , r , q ) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).

Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:

N =Q /t

Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.

Расчет в Excel прикладной задачи.

В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…

Условия задачи:

В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)

Расчет выполним в программе MS Excel или в программе OOo Calc .

С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице « ».

Исходные данные:

1. Названия веществ пишем:

в ячейку D3: Сталь

в ячейку E3: Лед

в ячейку F3: Лед/вода

в ячейку G3: Вода

в ячейку G3: Воздух

2. Названия процессов заносим:

в ячейки D4, E4, G4, G4: нагрев

в ячейку F4: таяние

3. Удельную теплоемкость веществ c в Дж/(кг*К) пишем для стали, льда, воды и воздуха соответственно

в ячейку D5: 460

в ячейку E5: 2110

в ячейку G5: 4190

в ячейку H5: 1005

4. Удельную теплоту плавления льда λ в Дж/кг вписываем

в ячейку F6: 330000

5. Массу веществ m в кг вписываем соответственно для стали и льда

в ячейку D7: 3000

в ячейку E7: 20

Так как при превращении льда в воду масса не изменяется, то

в ячейках F7 и G7: =E7 =20

Массу воздуха находим произведением объема помещения на удельный вес

в ячейке H7: =24*15*7*1,23 =3100

6. Время процессов t в мин пишем только один раз для стали

в ячейку D8: 60

Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно

в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8) =9,7

в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8) =41,0

в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8) =9,4

Воздух также должен прогреться за это же самое отведенное время, читаем

в ячейке H8: =D8 =60,0

7. Начальную температуру всех веществ T 1 в ˚C заносим

в ячейку D9: -37

в ячейку E9: -37

в ячейку F9: 0

в ячейку G9: 0

в ячейку H9: -37

8. Конечную температуру всех веществ T 2 в ˚C заносим

в ячейку D10: 18

в ячейку E10: 0

в ячейку F10: 0

в ячейку G10: 18

в ячейку H10: 18

Думаю, вопросов по п.7 и п.8 быть недолжно.

Результаты расчетов:

9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем

для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000 =75900

для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000 = 1561

для плавления льда в ячейке F12: =F7*F6/1000 = 6600

для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000 = 1508

для нагрева воздуха в ячейке H12: =H7*H5*(H10-H9)/1000 = 171330

Общее количество необходимой для всех процессов тепловой энергии считываем

в объединенной ячейке D13E13F13G13H13: =СУММ(D12:H12) = 256900

В ячейках D14, E14, F14, G14, H14, и объединенной ячейке D15E15F15G15H15 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).

10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается

для нагрева стали в ячейке D16: =D12/(D8*60) =21,083

для нагрева льда в ячейке E16: =E12/(E8*60) = 2,686

для плавления льда в ячейке F16: =F12/(F8*60) = 2,686

для нагрева воды в ячейке G16: =G12/(G8*60) = 2,686

для нагрева воздуха в ячейке H16: =H12/(H8*60) = 47,592

Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается

в объединенной ячейке D17E17F17G17H17: =D13/(D8*60) = 71,361

В ячейках D18, E18, F18, G18, H18, и объединенной ячейке D19E19F19G19H19 тепловая мощность приведена в дугой единице измерения – в Гкал/час.

На этом расчет в Excel завершен.

Выводы:

Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.

При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).

Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБУДЬТЕ ПОДТВЕРДИТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда - в папку « Спам» )!

Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост, понятен и интересен.

Жду вопросы и комментарии на статью!

Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...