Существует ли искусственный интеллект. Искусственный интеллект: как и где изучать — отвечают эксперты

Что же это такое искусственный интеллект? Несомненно, многие слышали о автомобилях, способных управлять своим движением без помощи человека, устройствах распознавания речи, таких как Apple’s Siri, Amazon’s Alexa, Google’s Assistant и Microsoft’s Cortana. Но это далеко не все возможности искусственного интеллекта (ИИ).

ИИ был впервые «открыт» в 1950-х годах. На протяжении многих лет его ожидали взлеты и падения, но на современном этапе развития человечества искусственный интеллект рассматривается как ключевая технология будущего. Благодаря развитию электроники и появлению более быстрых процессоров все большее количество приложений начинает использовать ИИ. Искусственный интеллект – это необычная программная технология, с которой должен ознакомиться каждый инженер. В данной статье мы постараемся кратно описать данную технологию.

Искусственный интеллект определен

ИИ — это подполе компьютерной науки, которая включает в себя более разумное использование компьютеров и электронных компонентов, имитируя человеческий мозг. Интеллект — это способность приобретать знания и опыт и применять их для решения задач. ИИ особенно полезен при анализе и интерпретации массивов данных и извлечении из него реально полезной информации. Из информации приходит понимание, которое может быть применено для принятия решений или какого-либо рода действия.

Области исследования

Искусственный интеллект – это широкая технология с множеством возможных применений. Обычно его разделяют на подветви. Сделаем небольшой обзор каждой из них:

  • Решение общих задач – не имеющих конкретного алгоритмического решения. Задачи с неопределенностью и двусмысленностью.
  • Экспертные системы – программное обеспечение, которое содержит базу знаний правил, фактов и данных, полученных от нескольких отдельных экспертов. База данных может быть запрошена для решения проблем, диагностики заболеваний или предоставления консультаций.
  • Обработка естественного языка (NLP) – используется для анализа текстов. Распознавание голоса также является частью (NLP).
  • Компьютерное зрение — анализ и понимание визуальной информации (фотографии, видео и так далее). Примером могут служить машинное зрение и распознавание лиц. Используется в «автономных» автомобилях и производственных линиях.
  • Робототехника – создание более умных, адаптивных и «самостоятельных» роботов.
  • Игры: ИИ отлично играет в игры. Компьютеры уже запрограммированы на игру и выигрыш в шахматах, покере и в Го.
  • Машинное обучение — процедуры, позволяющие компьютеру учиться на основе входных данных и осмысливать результаты. Нейронные сети составляют основу машинного обучения.

Как работает искусственный интеллект

Обычные компьютеры используют алгоритмы для решения задач. Последовательность инструкций приводит к пошаговому выполнению действий для получения результатов. Традиционные формы искусственного интеллекта основываются на базах знаний и механизмах логического вывода, которые используют различные механизмы для работы с базой знаний через пользовательский интерфейс. Полезные результаты получены некоторыми из перечисленных ниже методов:

  • Поиск: алгоритмы поиска используют базу данных информации, собранной в графы или деревья. Поиск — это основной метод искусственного интеллекта.
  • Логика: дедуктивное и индуктивное рассуждение используется для определения истинности или ложности утверждений. Это включает как логику высказываний, так и логику предикатов.
  • Правила: правила — это серия инструкций «если», которые можно найти для определения результата. Системы, основанные на правилах, называются экспертными системами.
  • Вероятность и статистика: некоторые задачи могут быть решены, и решения находятся, благодаря применению стандартной математической теории вероятности и статистики.
  • Списки: некоторые типы информации могут быть сохранены в списки, которые становятся доступными для поиска.
  • Другими формами знаний являются схемы, фреймы и сценарии, которые представляют собой структуры, инкапсулирующие различные типы знаний. Методы поиска ищут ответы по соответствующим запросам.

Традиционные или унаследованные методы ИИ, такие как поиск, логика, вероятность и правила, считаются первой волной искусственного интеллекта. Эти методы все еще используются и хорошо воспринимают знание и рассуждения, особенно для узкого круга задач. В первой волне ИИ отсутствуют человеческие черты обучения и абстрагирования решений. Эти качества теперь доступны во второй волне искусственного интеллекта, благодаря нейронным сетям и машинному обучению.

Нейронные сети

Сегодня большинство исследований и разработок ИИ основаны на использовании нейронных сетей или искусственных нейронных сетей (ИНС). Эти сети состоят из искусственных нейронов, имитирующих нейроны в человеческом мозге, которые отвечают за наше мышление и обучение. Каждый нейрон является узлом сложной взаимосвязи, которая связывает многие нейроны с другими посредством синапсов. ИНС имитирует эту сеть.

Каждый узел имеет несколько взвешенных входов, а также выход и установку порога (рисунок выше). Такие узлы обычно реализуются в программном обеспечении, хотя аппаратная эмуляция также возможна. Типичная схема состоит из трех слоев — входной слой, скрытый (обрабатывающий или обучающий слой) и выходной слой:

Некоторые механизмы используют обратное распространение для обеспечения обратной связи, которая изменяет веса ввода некоторых узлов по мере получения новой информации.

Машинное обучение и глубокое обучение

Машинное обучение — это метод обучения компьютера распознаванию образов. Компьютер или устройство «обучается» с примером, а затем запускаются специальные программы для сравнения ввода с обученным значением. Как правило, для обучения программного обеспечения требуются огромные объемы данных. Программы машинного обучения предназначены для автоматического изучения, поскольку они получают больше знаний и опыта благодаря новым материалам.

Нейронные сети обычно используются для машинного обучения, однако могут использоваться и другие алгоритмы. Затем программное обеспечение может изменить себя, улучшив распознаваемость на основе новых входных данных. Теперь некоторые системы машинного обучения могут самостоятельно распознавать образы без обучения, а затем модифицировать себя для дальнейшего совершенствования.

Глубокое обучение — это расширенный случай машинного обучения. Он также использует нейронные сети, называемые глубокими нейронными сетями (ГНС). Они включают в себя дополнительные скрытые уровни вычислений для дальнейшего совершенствования своих возможностей. Требуется массовое обучение. Программисты могут повысить производительность, играя с весами межсоединений. ГНС также требуют матричной обработки. Однако следует отметить, что ГНС используют статистические веса, поэтому результаты, скажем, в видимом распознавании, могут быть не 100%. Кроме того, отладка таких систем – очень кропотливая работа.

Машинное обучения и глубокое обучения широко используются для анализа больших массивов данных, а также в компьютерном зрении и распознавании речи. Также они могут применяться и в других областях, таких как медицина, юриспруденция и финансы.

Программное обеспечение искусственного интеллекта

Для программирования ИИ может использоваться почти любой язык программирования, но некоторые языки имеют определенные преимущества. Профильные языки, разработанные специально для ИИ, включают LISP и Prolog. LISP, один из старейших языков более высокого уровня, обрабатывает списки. Prolog основан на логике. Сегодня популярны C ++ и Python. Также существует специальное программное обеспечение для разработки экспертных систем.

Несколько крупных пользователей ИИ предоставляют платформы для разработки, в том числе Amazon, Baidu (Китай), Google, IBM и Microsoft. Эти компании предлагают предварительно обученные системы в качестве стартовой точки для некоторых распространенных приложений, таких как распознавание голоса. Поставщики процессоров, такие как Nvidia и AMD, также предлагают определенную поддержку.

Аппаратное обеспечение для искусственного интеллекта

Запуск программного обеспечения искусственного интеллекта на компьютере обычно требует высокой скорости и большого объема памяти. Однако некоторые простые приложения могут работать на 8-битном процессоре. Некоторые из современных процессоров более чем подходят, а несколько параллельных процессоров могут быть идеальным решением для определенных приложений. Кроме того, для некоторых применений были разработаны специальные процессоры.

Графические процессоры (GPU) представляют собой пример фокусировки архитектуры и набора инструкций на заданное использование для оптимизации производительности. Например, специальные процессоры Nvidia для самостоятельного вождения автомобилей и графические процессоры AMD. Google разработал собственные процессоры для оптимизации своих поисковых систем. Intel и Knupath также предлагают программную поддержку для своих передовых процессоров. В некоторых случаях специальная логика в ASIC или FPGA может реализовать определенное приложение.

Активность и текущий статус

Искусственный интеллект когда-то считался экзотическим программным обеспечением, предназначенным для особых нужд. Требование высокоскоростных компьютеров с большим количеством памяти ограничивало его использование. Сегодня, благодаря супер быстрым процессорам, многоядерным процессорам и дешевой памяти, ИИ стал более популярным. Поисковые системы Google, которые мы все используем ежедневно, основаны на искусственном интеллекте.

На сегодняшний день акцент, несомненно, сделан на нейронные сети и глубокое машинное обучение. В то время как распознавание голоса и самоходные автомобили по-прежнему в центре внимания, появляются другие ключевые приложения, такие как распознавание лиц, беспилотная навигация, робототехника, медицинская диагностика и финансы. В разработке также находятся и передовые военные приложения (например, автономное оружие).

Будущее ИИ выглядит многообещающим. По данным Orbis Research, к 2022 году ожидается рост глобального рынка искусственного интеллекта с совокупным ежегодным темпом роста более 35%. The International Data Corporation (IDC) также позитивно настроена, заявив, что расходы на искусственный интеллект, как ожидается, увеличатся до 47 миллиардов долларов в 2020 году, по сравнению с 8 миллиардами в 2016 году.

У многих возникает логический вопрос – заменит ли искусственный интеллект людей некоторых профессий, и что это будут за профессии? Ответ звучит следующим образом – «возможно и только некоторые». Скорее всего, компьютеры на основе искусственного интеллекта помогут повысить производительность некоторых профессий, повысив производительность, эффективность и скорость принятия решений. Однако, некоторые рабочие места в промышленности все же будут утеряны, так как большое развитие получает робототехника, но замена человека машинами приведет к созданию новых рабочих мест, связанных с обслуживанием этих машин.

Другой вопрос, задаваемый многими людьми, может ли быть искусственный интеллект опасен для человечества? ИИ умен, но не настолько умен. Его основным назначением будет анализ данных, решение задач и принятие решений на основе имеющейся информации и дистиллированных знаний. Люди по прежнему доминируют, особенно когда речь заходит о инновациях и творчестве. Однако трудно предсказать будущее. По крайней мере, на данном этапе развития сверх умных роботов нет, пока нет…

Он применяется практически везде: от сферы высоких технологий и сложных математических вычислений до медицины, автомобилестроения и даже при работе смартфонов. Технологии, лежащие в основе работы ИИ в современном представлении, мы используем каждый день и порой даже можем не задумываться об этом. Но что такое искусственный интеллект? Как он работает? И представляет ли опасность?

BB скоро будет везде!

Для начала давайте определимся с терминологией. Если вы представляете себе искусственный интеллект, как что-то, способное самостоятельно думать, принимать решения, и в целом проявлять признаки сознания, то спешим вас разочаровать. Практически все существующие на сегодняшний день системы даже и близко не «стоят» к такому определению ИИ. А те системы, что проявляют признаки подобной активности, на самом деле все-равно действуют в рамках заранее заданных алгоритмов.

Нейронные сети существуют с 1950-х годов (по крайней мере, в виде концепий). Но до недавнего времени они не получали особого развития, потому что их создание требовало огромных объемов данных и вычислительных мощностей. В последние несколько лет все это стало доступным, поэтому нейросети и вышли на передний план, получив свое развитие. Важно понимать, что для их полноценного появления не хватало технологий. Как их не хватает и сейчас для того, чтобы вывести технологию на новый уровень.

Стадии определения.

Для чего используется глубокое обучение и нейросети

Есть несколько областей, где эти две технологии помогли достичь заметного прогресса. Более того, некоторые из них мы ежедневно используем в нашей жизни и даже не задумываемся, что за ними стоит.

  • — это способность программного обеспечения понимать содержание изображений и видео. Это одна из областей, где глубокое обучение сделало большой прогресс. Например, алгоритмы обработки изображений глубокого обучения могут обнаруживать различные типы рака, заболеваний легких, сердца и так далее. И делать это быстрее и эффективнее врачей. Но глубокое обучение также укоренилось и во многих приложениях, которые вы используете каждый день. Apple Face ID и Google Photos используют глубокое обучение для распознавания лица и улучшения качества снимков. Facebook использует глубокое обучение, чтобы автоматически отмечать людей на загружаемых фотографиях и так далее. Компьютерное зрение также помогает компаниям автоматически идентифицировать и блокировать сомнительный контент, такой как насилие и нагота. И, наконец, глубокое обучение играет очень важную роль в обеспечении возможности самостоятельного вождения автомобилей, чтобы они могли понимать, что их окружает.
  • Распознавание голоса и речи. Когда вы произносите команду для вашего Google Ассистента, алгоритмы глубокого обучения преобразуют ваш . Несколько онлайн-приложений используют глубокое обучение для транскрибирования аудио- и видеофайлов. Даже когда вы «шазамите» песню, в дело вступают алгоритмы нейросетей и глубокого машинного обучения.
  • Поиск в интернете: даже если вы ищите что-то в поисковике, для того, чтобы ваш запрос был обработан более четко и результаты выдачи были максимально правильными, компании начали подключать алгоритмы нейросетей к своим поисковым машинам. Так, производительность поисковика Google выросла в несколько раз после того, как система перешла на глубокое машинное обучение и нейросети.

Пределы глубокого обучения и нейросетей

Несмотря на все свои преимущества, глубокое обучение и нейросети также имеют и некоторые недостатки.

  • Зависимость от данных: в целом, алгоритмы глубокого обучения требуют огромного количества обучающих данных для точного выполнения своих задач. К сожалению, для решения многих проблем недостаточно качественных данных обучения для создания рабочих моделей.
  • Непредсказуемость: нейронные сети развиваются каким-то странным путем. Иногда все идет как задумано. А иногда (даже если нейросеть хорошо справляется со своей задачей), даже создатели изо всех сил пытаются понять, как же алгоритмы работают. Отсутствие предсказуемости делает чрезвычайно трудным устранение и исправление ошибок в алгоритмах работы нейросетей.
  • Алгоритмическое смещение: алгоритмы глубокого обучения так же хороши, как и данные, на которых они обучаются. Проблема заключается в том, что обучающие данные часто содержат скрытые или явные ошибки или недоработки, и алгоритмы получают их «в наследство». Например, алгоритм распознавания лиц, обученный в основном на фотографиях белых людей, будет работать менее точно на людях с другим цветом кожи.
  • Отсутствие обобщения: алгоритмы глубокого обучения хороши для выполнения целенаправленных задач, но плохо обобщают свои знания. В отличие от людей, модель глубокого обучения, не сможет играть в другую подобную игру: скажем, в WarCraft. Кроме того, глубокое обучение плохо справляется с обработкой данных, которые отклоняются от его учебных примеров.

Будущее глубокого обучения, нейросетей и ИИ

Ясное дело, что работа над глубоким обучением и нейронными сетями еще далека от завершения. Различные усилия прилагаются для улучшения алгоритмов глубокого обучения. Глубокое обучение — это передовой метод в создании искусственного интеллекта. Он становится все более популярным в последние несколько лет, благодаря обилию данных и увеличению вычислительной мощности. Это основная технология, лежащая в основе многих приложений, которые мы используем каждый день.

Схемы и пути решения задач скоро заменят очень многое.

Но родится ли когда-нибудь на базе этой технологии сознание? Настоящая искусственная жизнь? Кто-то из ученых считает, что в тот момент, когда количество связей между компонентами искусственных нейросетей приблизиться к тому же показателю, что имеется в человеческом мозге между нашими нейронами, что-то подобное может произойти. Однако это заявляение очень сомнительно. Для того, чтобы настоящий ИИ появился, нам нужно переосмыслить подход к созданию систем на основе ИИ. Все то, что есть сейчас — это лишь прикладные программы для строго ограниченного круга задач. Как бы нам не хотелось верить в то, что будущее уже наступило…

Искусственный интеллект - одна из самых захватывающих тем фантастики XX века - делает невероятные успехи. Мы постоянно используем ИИ в повседневной жизни, зачастую сами того не подозревая. Тем не менее и сегодня искусственный разум не сходит со страниц фантастических романов и экранов кинотеатров. Кто-то из авторов рисует страшные картины порабощенного машиной человечества, а другие, напротив, видят в ИИ верного помощника и друга человека.

Где истина и что такое на самом деле искусственный интеллект? Превзойдет ли он когда-нибудь возможности человеческого разума? Или это уже произошло? GeekBrains готов ответить на самые популярные вопросы об искусственном интеллекте и перспективах его использования.

Что такое искусственный интеллект?

Искусственный интеллект (сокращенно - ИИ) - размытое понятие, и общепринятого определения у него до сих пор нет. В середине XX века, когда на Дартмутском семинаре впервые прозвучал этот термин, авторы вкладывали в него значение, существенно отличающееся от современных. Тогда ученые полагали, что искусственный интеллект - это система, которая будет способна переводить тексты с одного языка на другой, распознавать объекты по фото или видео, улавливать смысл произнесенных фраз и адекватно на них отвечать. Нынешние ИИ умеют все это! Но можем ли мы считать, что цели достигнуты и искусственный интеллект уже создан?

Некоторые ученые строят сложные теории на стыке философии и информатики, пытаясь определить, что же такое ИИ и каковы должны быть характеристики системы, чтобы считать ее разумной. Не вдаваясь в подробности, можно сказать, что интеллект определяется как способность к обучению, осознанию и применению знаний на практике. Следовательно, от искусственного интеллекта мы тоже вправе ожидать умения учиться, осознавать свои знания и использовать их. С первой и последней задачами современные ИИ вполне справляются!

Когда начались разработки ИИ?

Летом 1956 года в Дартмуте ученые собрались на семинар, посвященный вопросам искусственного интеллекта (там и был сформулирован этот термин), а уже в следующем году появилась концепция первой искусственной нейросети - перцептрон. В 1960 году Фрэнк Розенблатт создал на основе этой концепции компьютер «Марк-1». Первый в мире нейрокомпьютер учили распознавать буквы латинского алфавита. Но несовершенство техники 60-х и сложность процессов не позволили довести технологию до ума, а ее разработчик вскоре погиб. О нейрокомпьютерах забыли на 20 лет.

Лишь в 1980-е концепции нейросетей снова принялись изучать всерьез. Техника уже была достаточно мощной, да и критиков поубавилось: умная электроника быстро делала успехи. То, что два десятилетия назад казалось мечтой, стало выглядеть вполне реальным и достижимым. Впрочем, чтобы найти правильные подходы к обучению нейросетей, потребовалось еще 20 лет. Только в середине 2000-х ученые нащупали верный путь и искусственные нейросети начали свое победное шествие по планете.

Но прежде чем описывать их успехи, разберемся, как устроены эти сети.

Описание искусственного нейрона

Искусственные нейронные сети создавались как математическая модель человеческого мозга. Для этого ученым Уоррену Мак-Каллоку и Уолтеру Питтсу пришлось выработать теорию деятельности человеческого мозга.

В нем отдельные нейроны представляют собой живые клетки со сложным устройством. У каждого нейрона есть дендриты - разветвленные отростки, способные обмениваться сигналами с другими нейронами через синапсы, а также один аксон - более крупный отросток, отвечающий за передачу импульса от нейрона. Часть синапсов отвечает за возбуждение нейрона, часть - за торможение. От того, какие сигналы и через какие синаптические связи придут на «вход» нейрона, будут зависеть и те импульсы, которые он передаст другим нейронам.

Для искусственного нейрона физический носитель не нужен. По большому счету, он представляет собой математическую функцию. Ее задача - получить информацию (например, сигналы от множества других искусственных нейронов), обработать ее определенным образом, а затем выдать результат на «аксон» - выход. В искусственной сети нейроны принято делить на три типа:

  • входные - каждый из этих нейронов получает на «вход» элемент исходной информации (например, одну точку изображения, если сеть распознает фотографии);
  • промежуточные - обрабатывают информацию;
  • выходные - выдают результат (при распознавании фото результатом может быть идентификатор изображенного объекта).

Сама нейросеть создается слоями, как пирог. Один из внешних слоев содержит входные нейроны, другой - выходные, а между ними могут располагаться один или несколько промежуточных. Каждый нейрон промежуточной сети соединен с множеством нейронов из двух окружающих слоев. Общение между нейронами обеспечивается с помощью весов - числовых значений, которые каждый нейрон вычисляет на основе данных, полученных от предыдущего слоя сети.

Создавая искусственные нейронные сети, ученые ориентировались на устройство человеческого мозга. Поэтому принципы поведения рукотворных нейронов не так уж сильно отличаются от настоящих, живых. Может быть, и разум, который сможет развиться на основе таких нейросетей, будет приближен к человеческому?

Отличие искусственного интеллекта от естественного

Вопрос, чем ИИ отличается от естественного интеллекта, на самом деле лежит скорее в философской плоскости, чем в строго научной. И дело даже не в том, что мы не можем представить себе, на что будет похож (или не похож) искусственно созданный разум. Вообразить мы как раз способны что угодно - и писатели-фантасты многократно это доказали. Дело в том, что ни один искусственный интеллект, существующий на сегодняшний день, не достиг достаточно высокого уровня развития, чтобы состязаться с человеком на равных.

Существует точка зрения, высказанная философом Джоном Серлом еще в 1980-е годы. Он ввел термины «сильный ИИ» и «слабый ИИ». Сильный искусственный интеллект, по мнению ученого, может осознавать себя и мыслить подобно человеку. Слабый на это не способен.

Сегодняшние ИИ, если классифицировать их по Серлу, однозначно относятся к слабым, поскольку ни у одного из них пока не зародилось самосознания. Наши искусственные нейросети распознают лица и рисуют странные, невероятные картины, читают рукописный текст и даже складывают стихи - но они и создавались исключительно для этих целей. Ни одна из этих нейросетей не способна передумать и выбрать для себя другую «специальность». Они делают лишь то, чему их обучили, и в некотором смысле их можно считать запрограммированными на выполнение этих задач. Подлинного понимания, что стоит за этими вещами, у них нет. Серл утверждал, что построение сильного ИИ в принципе невозможно.

Еще один философ, Хьюберт Дрейфус, также полагал, что компьютерные системы никогда не смогут сравняться с человеком - так как в своей разумной деятельности он опирается не только на усвоенные знания, но и эмпирический опыт. Компьютеры им не обладают по определению - следовательно, не судьба им развить собственный разум.

Но эти самоуверенные утверждения были сделаны во времена, когда нейросети делали только первые шаги. Сегодня, глядя на их успехи в обучении, нетрудно поверить в реальность ИИ, который сможет стать равным человеку, а то и превзойти его.

Как сравнить человеческий и компьютерный интеллекты?

Постойте, а как мы вообще можем определить, достиг ли искусственный интеллект человеческого уровня или нет?

Можно предположить, что один из критериев - наличие чувств и эмоций, а также креативность. Если машина начала испытывать страх или любовь, если она вдруг решила написать стихотворение или нарисовать картину - разве это не будет проявлением разума?

Вполне возможно. Однако чувства есть и у животных, и у птиц. При этом на вопрос об их разумности (тем более - равенстве их разума человеческому) мы чаще отвечаем отрицательно. К тому же, чувства можно и запрограммировать - в большинстве они являются реакцией на конкретные внешние раздражители. Наконец, у нас попросту нет данных о том, смогут ли компьютеры когда-нибудь испытывать эмоции, сравнимые с человеческими. Но должны ли их чувства быть похожими на наши?

Может, более надежный критерий - самосознание? Если машина задается вопросом «Кто я?» - это и есть момент появления разумности? Но самосознание присутствует и у животных. При этом большинство людей вполне способны прожить свой век, не вникая в глубокие философские вопросы.

Существуют ли более точные и строгие методы для сравнения интеллектов? Ведь есть же коэффициент IQ, с помощью которого можно оценить умственные способности человека. Почему бы не использовать его для машины?

У компьютерных программ есть IQ?

Измерить интеллект даже у человека невероятно сложно - к когнитивным и мыслительным способностям нельзя приложить линейку. Более того, IQ - показатель не абсолютный, а относительный. Некоторые ученые вообще считают, что тесты IQ измеряют не интеллект как таковой, а способность проходить такие тесты. Ее можно натренировать и получить блестящий результат - но интеллект при этом, разумеется, не изменится. Так что показатель IQ - не более чем число, которое связано с интеллектом, но не может дать его объективную оценку.

В некоторых IQ-тестах преобладают задачи на наблюдательность или логику, в других - на комбинаторику, в третьих - на математическое мышление. Результат будет зависеть от того, что дается человеку легче и в чем он компетентнее. Значение имеют скорость прохождения тестов и специализация задач.

ИИ тоже можно «натаскать» на решение определенных классов задач, и на IQ-тест у машины уйдет куда меньше времени, чем у человека. Так что нейросеть сможет набирать немыслимые для гениальных людей баллы, но при этом будет не способна ответить на простейшие вопросы, к которым ее при обучении не подготовили.

Так существуют ли вообще критерии, по которым можно объективно судить о машинном интеллекте? Одним из первых исследователей, попытавшихся выработать их, стал известный британский математик Алан Тьюринг.

Что такое тест Тьюринга?

В 1950 году Тьюринг опубликовал статью «Вычислительные машины и разум», в которой обсуждал вопросы теоретической возможности мышления у машин. Это было не первое исследование на тему искусственного интеллекта и даже не первая подобная работа Тьюринга, но именно она стала отправной точкой серьезных научных дискуссий и споров.

Тьюринг начал с определений, чтобы уточнить вопрос о том, может ли машина думать, - он показался ему слишком размытым. Что за машина имеется в виду? Что вообще означает «думать»?.. Было очевидно, что такой вопрос изначально несет в себе иррациональное зерно, которое не позволит дать на него правильный ответ. Результатом размышлений ученого стал тест Тьюринга - эксперимент, в котором человеку («судье») предлагается общаться с двумя собеседниками: человеком и компьютером. Задача судьи - понять, кто есть кто. Если в результате он не уверен, который из его собеседников - программа, или ошибся в оценке, считается, что машина прошла тест.

Суть теста Тьюринга не в создании «машины-обманщика», способной притвориться человеком. Он помогает убедиться в том, что конкретная машина или программа обладает разумом, который трудно отличить от человеческого. Такой компьютер Тьюринг назвал «интеллектуальным» - этому определению уже более 60 лет, и оно остается актуальным.

Процессоры для ИИ

Технологии ИИ не ограничиваются программными решениями. Сегодня активно разрабатываются электронные чипы, в которые поддержка ИИ встроена на аппаратном уровне. Микропроцессоры такого типа называют нейронными процессорами. Они применяются в беспилотных автомобилях и летательных аппаратах (дронах), промышленных роботах и автоматах, а также для решения специализированных задач - распознавания голоса или изображений, создания поисковых систем и машинных переводчиков.

Среди таких девайсов - тензорный процессор Google (TPU), созданный специально для систем машинного обучения. В свободной продаже этого устройства пока нет: его использует только сама компания Google - для оптимизации поисковой выдачи и обработки фотографий. TPU оперирует 8-битными числами (что чрезвычайно мало для точных вычислений), и имеет чуть более десятка команд (другие современные процессоры могут располагать сотнями). Но это не мешает тензорному процессору эффективно выполнять расчеты, связанные с искусственным интеллектом и нейросетями. Процессор быстро развивается - Google каждый год выкатывает новую версию.

Тензорный процессор Google Tensor Processing Unit 3.0 (TPU)

Есть и другие разработки подобных чипов. Многие из них - узкоспециализированные: к примеру, предназначены ускорять программы ИИ для компьютерного зрения.

Рынок технологий искусственного интеллекта

Технологии искусственного интеллекта применяются практически во всех сферах человеческой деятельности, так что у искусственного интеллекта большое будущее. Рынок продуктов, использующих ИИ, стремительно растет.

Мировой рынок

К 2022 году прогнозируемый объем рынка ИИ достигнет 52 миллиардов долларов. Возможно, это не такая уж большая цифра - к примеру, рынок компьютерных игр к этому же году превысит 130 миллиардов, а рынок смартфонов уже в 2018 был в 10 раз больше - 520 миллиардов.

Но рынок ИИ показывает беспримерно высокий рост - по некоторым оценкам, он увеличивается примерно на 30 % ежегодно (аналогичные показатели для игр и смартфонов - около 5 %). Если такие темпы внедрения технологий сохранятся еще несколько лет, можно ожидать, что скоро искусственный интеллект будет буквально повсюду.

Свой вклад в развитие ИИ вносят крупнейшие мировые IT-компании: Google, IBM, Intel, Nvidia. Среди стран лидируют США, Китай и Великобритания.

В России

Если в 2017 году проектов с использованием ИИ в России было всего несколько десятков, то в 2018 - уже сотни. По прогнозам экспертов, к 2020 году объем рынка достигнет 28 миллиардов рублей (примерно 450 миллионов долларов). Активнее всего новые технологии используются в финансовой сфере, а также телекоммуникациях, ритейле и энергетике. Некоторые компании нанимают команды специалистов, занимающихся исключительно вопросами разработки и внедрения систем ИИ.

Несмотря на то, что рост рынка идет в целом даже быстрее, чем в мире, есть проблемы. Главной бедой остается нехватка специалистов по машинному обучению. Значит, самое время заняться изучением ИИ, чтобы получить востребованную специальность и высокооплачиваемую работу.

Влияние искусственного интеллекта на рынок труда

Уже сегодня существуют области, где ИИ может заменить человека. Например, приложения могут отвечать клиентам по телефону или в чате на несложные вопросы. Это позволяет оптимизировать нагрузку операторов call-центров и даже сократить их штат.

На производстве ИИ способен управлять автоматикой и промышленными роботами. Искусственная нейросеть, постоянно контролирующая показатели множества датчиков, сумеет быстрее человека среагировать на нештатную ситуацию и предпринять правильные меры - отключить конвейер или остановить механизмы. Во многих случаях такие системы могут заранее предсказать неполадки и предотвратить ЧП.

ИИ будет вытеснять людей с рабочих мест. Он обходится дешевле и допускает меньше ошибок. Не умеет лениться, прокрастинировать и зависать в фейсбуке, не нуждается в отдыхе, сне и отпуске, не грустит и не устает. Идеальный работник.

В первую очередь искусственные нейросети потеснят человека в выполнении рутинных операций, возьмут на себя сложные расчеты, оценку рисков, сбор информации, моделирование ситуаций по заданным параметрам. ИИ можно задействовать на опасных и вредных производствах.

Но люди по-прежнему будут нужны там, где роботы еще долго не сумеют составить им конкуренцию. И речь не только о творческой сфере. ИИ пока способен выполнять только узкоспециализированные задачи, на которые его натренировали, поэтому заменить людей могут в той же мере, что калькулятор - математика. При этом развитие технологий ИИ открывает огромный рынок труда для специалистов, связанных с машинным обучением и обслуживанием интеллектуальной техники.

Где используется ИИ?

Говоря кратко - почти везде!

Не так уж много осталось сфер человеческой деятельности, совсем не затронутых технологиями ИИ. Рассмотрим только самые важные области, где ИИ уже используется.

ИИ в интернете

Всякий раз, когда вы произносите «Окей, Гугл» или «Привет, Сири», вы обращаетесь к искусственному интеллекту в вашем смартфоне. Он способен распознать в сигнале с микрофона обращенную к нему речь. Он записывает ваш вопрос и пересылает на серверы Google или Apple. Там к делу подключается второй ИИ, который распознает речь и переводит вопрос в понятный компьютеру формат. А затем третий выполняет поиск ответа по гигантским базам данных. Наконец, ответ возвращается на ваш смартфон, где ИИ, генерирующий человеческий голос, озвучивает его для вас. И все это за доли секунды.

ИИ на транспорте и в логистике

Впечатляющее применение искусственных нейросетей - беспилотные автомобили. За последнее десятилетие разрабатывать машину, которая была бы способна самостоятельно перемещаться по дорогам, взялись многие автопроизводители - General Motors, Nissan, BMW, Honda, Volkswagen, Audi, Volvo, а также компании Google и Tesla. Беспилотники пока не стали массовым явлением на улицах наших городов, но они явно делают успехи.

Компания Amazon с 2013 года разрабатывает идею доставки товаров и почтовых отправлений с помощью дронов. Впервые посылка прибыла к получателю с беспилотным летательным аппаратом еще в декабре 2016. В некоторых регионах дронами доставляют еду, лекарства и даже портативные дефибрилляторы. Система пока не идеальна, но она продолжает развиваться. К сожалению, дроны могут служить и противозаконным целям: зафиксированы случаи доставки запрещенных предметов в тюрьмы с помощью беспилотников, а также использование дронов для перевозки наркотиков.

ИИ в финансах

В финансовой сфере ИИ применяют для прогнозирования рисков, выявления мошенничества. Корпорация MasterCard, создавшая международную платежную систему, несколько лет назад внедрила сервис Decision Intelligence. Он призван повысить точность подтверждения подлинных транзакций и снизить вероятность ложных отклонений платежей - это ошибочное срабатывание встроенной системы безопасности, которая не позволяет совершить корректную транзакцию, принятую за мошенническую. Подобные ошибки наносят вред как продавцу, теряющему клиента, так и покупателю, не получающему товар. Убытки получаются даже выше, чем ущерб от мошенничества.

Система, работающая на искусственной нейросети, использует информацию из множества источников, чтобы на лету оценивать, насколько транзакция «нормальна». Учитывается не только надежность и история транзакций продавца, но даже типичность покупки для покупателя и его местоположение, а также время суток. Все это помогает надежнее защитить людей от мошенничества и минимизировать ложные срабатывания.

ИИ в медицине

В здравоохранении ИИ развивается в первую очередь в области диагностики заболеваний. Искусственные нейросети научились распознавать раковые опухоли на рентгеновских снимках, КТ, маммографии и МРТ. Опытному врачу на изучение снимка требуется около 20 минут, а нейросети - считаные секунды. Так что пациент может узнать результаты обследования практически мгновенно. Особенно приятно, что такие разработки ведутся и в России.

Диагностирующие ИИ способны выявлять не только рак, но и ранние стадии болезни Альцгеймера, пневмонию и другие заболевания.

В обороне и военном деле

В 2018 году стало известно, что в армии США разрабатывается ИИ, способный распознавать человеческие лица в темноте и даже сквозь стены - с помощью тепловизора. Ожидается, что технология поможет выявлять главарей банд в местах военных действий.

Другой ИИ - ALPHA - создан для управления беспилотными истребителями и ведения воздушного боя. В одном из сражений на симуляторах компьютер победил, управляя одновременно четырьмя самолетами против двух противников-людей.

Разрабатываются также системы прицеливания для танков, способные заметить закамуфлированные цели.

В военно-промышленном комплексе ИИ поможет повысить обороноспособность стран, но может стать и оружием террора.

В бизнесе и торговле

В ритейле ИИ производит революцию. Искусственные нейросети улучшают качество сервиса и обеспечивают индивидуальный подход к каждому потребителю. Умные технологии выявляют мошенничества с банковскими картами, дают персональные советы и помогают подобрать товар.

Согласно данным TAdviser, в 2018 году свыше трети всех доходов ритейла было получено благодаря рекомендациям на основе ИИ!

ИИ в спорте

Здесь ИИ-технологии используют для прогнозирования результатов матчей - такие системы созданы компаниями UBS, Commerzbank и Microsoft. Учитывается опыт команды и отдельных игроков. Порой прогнозы оказываются верными, но зачастую искусственный интеллект серьезно просчитывается. Человеческий фактор способен опровергнуть любые предсказания.

ИИ в культуре

Машина не может заниматься творчеством, потому что у нее нет воображения! Или все же может?

Как ни странно, искусственные нейросети способны проявить креативность, и даже достигают определенных высот в сфере культуры.

Музыка

Как звучала бы флейта, если бы была ситаром? Синтезатор NSynth Super от Google использует нейронную сеть, чтобы создавать совершенно новые звуки на основе разных инструментов.

Alice, разработанная в рамках стартапа Popgun, умеет «подыгрывать» человеку, создавая музыкальные импровизации. Американская певица Тэрин Саузерн выпустила альбом в соавторстве с нейросетью Amper. А проект Endel способен по нажатию одной кнопки создавать композиции, созвучные настроению пользователя.

Живопись

Нейросеть DeepDream создавали с прицелом на распознавание лиц, а у нее обнаружились способности к сюрреалистической живописи. Разработчики открыли сайт, на котором любой желающий может в сотрудничестве с ИИ создать удивительное полотно. Нейросеть пишет картины в разных стилях.

Правда, придумывать сюжеты она пока не умеет - просит помощи человека.

Видео

С помощью ИИ, разработанных Google и Facebook, можно «заставить» человека на экране произнести любые слова, изобразить весь спектр эмоций. И отличить такие ролики от настоящих бывает непросто. Нейросети могут даже заменить одного актера на другого в отснятом кино. А это открывает возможности не только для кинематографистов, но и для создателей фальшивок.

Литература

Нейросеть от Facebook умеет писать стихи, идеально выдерживая размер и ритм, подбирая хорошие рифмы. Читатели лишь в половине случаев сумели распознать сгенерированные компьютером строки, но до настоящих поэтов ИИ далеко. Машина пока не научилась передавать эмоции и вкладывать смысл в стихотворные произведения.

Яндекс тоже запустил «Автопоэта» , который создавал стихотворения из поисковых запросов пользователей. Некоторые невозможно читать без улыбки. Трудно поверить, что их сочинила нейросеть, лишенная чувства юмора!

А компания Narrative Science разработала электронного журналиста. Пока статьи, написанные ИИ, просты по содержанию, но руководство компании с оптимизмом смотрит в будущее и верит, что к 2025 году до 90 % текстов в интернете будут написаны с помощью машинного интеллекта.

В 2016 году книга «День, когда компьютер напишет роман» вышла в финал японской литературной премии имени Хоси Синъити. Это произведение почти полностью создал искусственный интеллект.

Игры

В компьютерных играх нейросети используются для управления противниками и игровыми ботами. Но ИИ можно научить играть и «по другую сторону экрана» - то есть считывать визуальную информацию с экрана и управлять игровым персонажем, как это делает человек.

В 2016 году между ИИ даже проводился чемпионат по Doom. А система Deep-Q-Network обучена играть на классических аркадных автоматах Atari. Зачастую она показывает результаты до 30 % выше, чем у опытных игроков.

В XX веке считалось, что искусственный интеллект можно будет считать достаточно мощным и развитым, когда он сумеет обыграть чемпиона мира по шахматам. Этот этап компьютеры прошли уже давно - еще в 1997 году Deep Blue одержал победу над Гарри Каспаровым (причем это была алгоритмическая программа, а не искусственный интеллект).

После этого внимание публики обратилось к более сложным тактическим играм, например го. Сложность вычислений хода здесь на порядок выше, чем в шахматах, поэтому создать алгоритмы, которые перебирали бы возможные варианты, практически невозможно. Но обученные нейросети сумели справиться и с этой игрой. Уже в 2015 году разработанная Google сеть AlphaGo выиграла матч у профессионального игрока в го.

Перспективы развития искусственного интеллекта

Научные исследования ИИ ведутся более полувека, но до сих пор далеко не все понимают суть технологии. В фантастических романах и фильмах писатели и режиссеры изображают, каким опасным может быть искусственный интеллект. И у многих представление об искусственном разуме формируется именно таким.

Ответим рационально на вопросы, связанные с далекими перспективами развития ИИ.

Цель ИИ - поместить человеческий разум в компьютер?

Нет, это не так. Даже теоретически подобная ситуация не так уж невероятна. Искусственные нейросети создаются по образу человеческого мозга, хотя и в очень упрощенном виде. Может быть, однажды станет возможно просканировать все разделы мозга живого человека, составить «карту» его нейронов и синаптических связей и воспроизвести ее копию в компьютере. От такой скопированной нейросети можно ожидать не только разумного поведения - она буквально будет двойником человека, сможет осознавать себя, принимать решения и совершать поступки, как он. Скопируются даже воспоминания. Теоретически, можно будет поместить такую нейросеть в искусственное тело (в робота), и тогда человек - копия его сознания - сможет жить практически вечно.

На практике осуществить такой перенос будет невероятно сложно: нет технологий, которые позволили бы «прочитать» живой мозг и создать его «карту». И мы пока очень далеки от создания искусственной нейросети, которая была бы столь же мощной, как мозг.

ИИ стремится достичь человеческого уровня интеллекта?

Цель ИИ - помогать людям и брать на себя сложные или рутинные задачи. Для этого ему вовсе не обязательно поддерживать беседы на философские темы или сочинять поэмы.

Тем не менее, если искусственный интеллект однажды сможет достичь уровня человеческого мышления, это будет важной вехой для цивилизации. Мы получим дельного и умного помощника - и сможем по праву гордиться тем, что это творение наших рук.

Когда искусственный интеллект достигнет человеческого уровня?

Мы успешно создаем сравнительно небольшие нейросети, способные распознать голос или обработать изображение. Никакой ИИ пока не обладает такой же пластичностью, как наш мозг.

Человек может сегодня заниматься музыкой, а завтра взяться за программирование на C++ - благодаря невероятной сложности мозга. В нем 86 миллиардов нейронов и бесчисленное количество синаптических связей между ними.

Искусственным нейросетям пока далеко до этих показателей: у них от нескольких тысяч до миллионов нейронов. Есть технические ограничения на размеры нейросетей: даже суперкомпьютеры не «потянут» нейросеть, сопоставимую по масштабам с человеческим мозгом. Не говоря о том, что ее обучение будет нетривиальной задачей.

Скорость компьютеров позволяет им обладать интеллектом?

«Мощность» интеллекта связана не со скоростью вычислений, а со сложностью нейронной сети. Человеческий мозг пока превосходит по мощности любую искусственную нейросеть, несмотря на то что скорость процессов в нем существенно ниже, чем в компьютерах.

Искусственные нейронные сети состоят из отдельных нейронов, которые группируются в слои. Два внешних слоя служат «входом», на который подается исходная информация, и «выходом», с которого считывается результат. Между ними могут располагаться от одного до нескольких десятков, а то и сотен, промежуточных слоев из нейронов. Причем каждый нейрон в слое соединен с множеством других в предыдущем и следующем слоях.

Чем сложнее устроена сеть, чем больше в ней слоев и нейронов, тем более масштабные и серьезные задачи она может выполнять.

Может ли нейросеть развиваться естественным путем?

Разберемся, вероятно ли, что ИИ сможет получать опыт и обучаться естественно, как ребенок. Человеческий разум формируется под воздействием множества факторов. Мы получаем информацию о внешнем мире благодаря органам восприятия - наблюдая, осязая, пробуя на вкус. Взаимодействуя с окружающей средой, получаем жизненный опыт, знания о свойствах мира, социальные навыки. Наш мозг постоянно совершенствуется и физически меняется, наращивая новые синаптические связи и «прокачивая» существующие.

Если мы сумеем создать нейронную сеть, достаточно сложную, чтобы она могла развиваться подобным образом, и снабдим ее «органами чувств» - видеокамерой, микрофоном и подобным, - возможно, спустя время она сможет приобрести «жизненный опыт». Но это дело далекого будущего.

Риск для человеческой цивилизации - есть ли он?

Риски, связанные с новыми технологиями, всегда существуют. Вопрос - в чем они заключаются.

Может оказаться, что искусственные нейросети, достигнув определенного порога, выйдут на «плато» эффективности и не будут развиваться дальше. Или не оправдают надежд, если окажется, что ИИ в принципе не способен справиться с тем или иным классом задач, например творческого характера. Это может обернуться потерями трудозатрат и финансовых вложений.

Если же под риском понимать техногенные катастрофы или восстание машин - пока это нам вряд ли грозит. Говоря простыми словами, современные нейросети не способны обратиться против создателей - как нейроны в мозге, управляющие движением руки, не способны осознать себя как личность и нанести удары по собственному телу.

Тем не менее мы должны помнить, что ИИ - наша разработка. Мы их проектируем, создаем, обучаем, вкладываем «мысли». Значит, и ответственность за их поведение - на нас.

Четвертая революция

Как бы мы ни относились к искусственному интеллекту, придется принять тот факт, что он уже существует. Отказаться от него - значит сделать шаг назад в развитии. Ведь ИИ - это важная часть нашего прогресса. Многие ученые связывают с искусственными нейросетями начало четвертой промышленной революции и заявляют о том, что грядет новая эпоха - когда рядом с нами появится рукотворный разум, всегда готовый прийти на помощь.

Все новое пугает и вызывает недоверие - это нормальная человеческая реакция, и многие люди с опаской относятся к ИИ. Про ужасы, которые принесет нам искусственный разум, не говорил разве что ленивый фантаст. Но подобное в свое время сочиняли о каждом технологическом новшестве. Люди боялись паровозов, потому что они «распугают коров, отравят птиц дымом, а при скорости свыше 15 миль в час пассажиров разорвет на части». Вероятно, потомки тоже будут посмеиваться над нашими страхами, о которых узнают из фильмов и книг XX и XXI веков.

Искусственный интеллект (ИИ, artificial intelligence, AI) - это наука создания интеллектуальных технологий и компьютерных программ.

Искусственный интеллект тесно связан с задачей понять человеческий интеллект с помощью компьютерных технологий. На данный момент нельзя точно сказать, какие вычислительные методы можно называть интеллектуальными. Одни механизмы интеллекта открыты для понимания, остальные нет. На данный момент в программах используются методы, не встречающиеся у людей.

Искусственный интеллект имеет научное направление, которое изучает решение задач интеллектуальной деятельности человека. Искусственный интеллект направлен на выполнение творческих задач в области, знания о которой хранится в интеллектуальной системе программы - базе знаний .

С этими знаниями работает механизм программы - решатель задач . Затем человек получает представление о результате работы программы через интеллектуальный интерфейс. Результатом программы искусственного интеллекта, является воссоздание интеллектуального рассуждения или разумного действия.

Одним из главных свойств искусственного интеллекта является способность самообучаться. В первую очередь, это эвристическое обучение - непрерывное обучение программы, формирование процесса обучения и собственных целей, анализ и осознание своего обучения.

Научное направление изучающее искусственный интеллект начало зарождаться еще давно:

  • философы думали о познании внутреннего мира человека
  • психологи изучали мышление человека
  • математики занимались расчетами

Вскоре, были созданы первые компьютеры, которые позволили выполнять вычисления обгоняя по скорости человека. Тогда ученые стали задавать вопрос: где граница возможностей компьютеров и могут они достигнуть уровня человека?

Алан Тьюринг - английский ученый, пионер вычислительной техники, написал статью «Может ли машина мыслить?», где описал метод, который поможет определить, в какой момент компьютер можно сравнить с человеком. Этот метод получил названием - тест Тьюринга .

Суть метода заключается в том, чтобы человек сначала отвечал на вопросы компьютера, затем на вопросы другого человека и при этом не зная, кто именно задал ему вопросы. Если при ответе на вопросы компьютера, человек не заподозрил, что это машина, то прохождение теста Тьюринга можно считать успешным, как и то, что компьютер является искусственным интеллектом.

Таким образом, если компьютер проявляет схожее с человеческим поведение в любых естественных ситуациях и способен поддержать диалог с человеком, то можно сказать, что это искусственный интеллект. Еще один предполагаемый метод определения является ли машина интеллектуальной, это ее способность к творчеству и возможность чувствовать.

Существует множество разных подходов к изучению и пониманию искусственного интеллекта.

Символьный подход

Символьный подход стал первым в цифровую эпоху машин. После создания языка символьных вычислений Лисп, его авторы приступили к реализации интеллекта. Символьный подход используйте слабоформализованные представления. Пока что интеллектуальную работу и связанные с творчеством задачи способен выполнять только человек. Работа компьютеров в этом направлении является предвзятой и по сути не может выполняться без участия человека.

Символьные вычисления помогли создать правила для решения задач в процессе выполнения компьютерной программы. Однако стало возможно решать только самые простые задачи, а при появлении любой сложной задачи необходимо снова подключаться человеку. Таким образом, такие системы не позволяют называть их интеллектуальными, так как их возможности не позволяют решать возникающие трудности и совершенствовать уже знающие способы решения задач для решения новых.

Логический подход

Логический подход основан на моделировании рассуждений и применением языка логического программирования. Например, язык программирования Пролог основан на наборе правил логического вывода без жестких последовательных действий для достижения результата.

Агентно-ориентированный подход

Агентно-ориентированный подход основан на методах помогающих интеллекту выживать в окружающей среде для достижения определенных результатов. Компьютер воспринимает свое окружение и воздействует на него с помощью поставленных методов.

Гибридный подход

Гибридный подход включает в себя экспертные правила, которые могут создаваться нейронными сетями, а порождающие правила с помощью статистического обучения.

Моделирование рассуждений

Существует такое направление в изучении искусственного интеллекта, как моделирование рассуждений. Данное направление включает в себя создания символьных систем, для постановки задач и их решения. Поставленная задача должна быть переведена в математическую форму. При этом у нее еще нет алгоритма для решения из-за сложности. Поэтому моделирование рассуждений содержит доказательство теорем, принятие решений, планирование, прогнозирование и т.п.

Обработка естественного языка

Еще одним важным направлением искусственного интеллекта является обработка естественного языка , на котором делается анализ и обработка текстов на понятном для человека языке. Цель этого направления - обработка естественного языка для самостоятельного приобретения знаний. Источником информации может быть текст введенный в программу или полученный из интернета.

Представление и использование знаний

Инженерия знаний - это направление получения знаний из информации, их систематизация и дальнейшее использование для решения различных задач. С помощью специальных баз знаний экспертные системы получают данные для процесса нахождения решений поставленных задач.

Машинное обучение

Одним из основных требований к искусственному интеллекту является возможность машины к самостоятельному обучению без вмешательства учителя. К машинному обучению относятся задачи по распознаванию образов: распознавание символов, текста и речи. Сюда же относится и компьютерное зрение, связанное с робототехникой.

Биологическое моделирование ИИ

Существует такое направление, как квазибиологическая парадигма , которое иначе называется Биокомпьютинг . Данное направление в искусственном интеллекте изучает разработку компьютеров и технологий с использованием живых организмов и биологических компонентов - биокомпьютеров.

Робототехника

Область робототехники тесно связана с искусственным интеллектом. Свойства искусственного интеллекта также необходимы роботам для выполнения множества различных задач. Например, для навигации и определения своего местоположения, изучения предметов и планирование своего перемещения.

Области применения искусственного интеллекта

Искусственный интеллект создается с целью решать задачи из различных областей:

  • Интеллектуальные системы для образования и отдыха.
  • Синтез и распознавание текста и человеческой речи используется в системах обслуживания клиентов.
  • Системы распознавания образов используются используют в системах безопасности, при оптическом и акустическом распознавании, медицинской диагностике, системах определения целей.
  • В компьютерных играх применяются системы ИИ для расчета игровой стратегии, имитации поведений персонажей, нахождения пути в пространстве.
  • Системы алгоритмической торговли и принятия решений.
  • Финансовые системы для консультации и управления финансами.
  • Роботы используемые в промышленности для решения сложных рутинных задач: роботы для ухода за больными, роботы консультанты, а также занимающиеся деятельностью опасной для жизни человека: роботы спасатели, роботы минеры.
  • Управление человеческими ресурсами и рекрутинг, просмотр и ранжирование кандидатов, прогнозирование успеха сотрудников.
  • Системы распознавания и фильтрации спама в электронной почте.

Это далеко не все области, где можно применить искусственный интеллект.

Сейчас создание искусственного интеллекта является одной из важных задач человека. Однако пока нет единой точки зрения на то, что можно считать интеллектом, а что нельзя. Многие вопросы вызывают споры и сомнения. Возможно ли создание интеллектуального разума, который будет понимать и решать проблемы людей? Разум, не лишенный эмоций и со способностями присущими живому организму. Пока не настало время, когда мы это увидим.

С момента изобретения компьютеров, их способность выполнять различные задачи продолжают расти в геометрической прогрессии. Люди развивают мощность компьютерных систем, увеличивая выполнения задач и уменьшая размер компьютеров. Основной целью исследователей в области искусственного интеллекта - создание компьютеров или машин таких же разумных как человек.

Автором термина «искусственный интеллект» является Джон Маккарти, изобретатель языка Лисп, основоположник функционального программирования и лауреат премии Тьюринга за огромный вклад в области исследований искусственного интеллекта.

Искусственный интеллект - это способ сделать компьютер, компьютер-контролируемого робота или программу способную также разумно мыслить как человек.

Исследования в области ИИ осуществляются путем изучения умственных способностей человека, а затем полученные результаты этого исследования используются как основа для разработки интеллектуальных программ и систем.

Философия ИИ

Во время эксплуатации мощных компьютерных систем, каждый задавался вопрос: «А может ли машина мыслить и вести себя также как человек? ».

Таким образом, развитие ИИ началось с намерения создать подобный интеллект в машинах, схожий с человеческим.

Основные цели ИИ

  • Создание экспертных систем - систем, которые демонстрируют разумное поведение: учиться, показывать, объяснять и давать советы;
  • Реализация человеческого интеллекта в машинах - создание машины, способную понимать, думать, учить и вести себя как человек.

Что способствует развитию ИИ?

Искусственный интеллект - наука и технология, основанная на таких дисциплинах, как информатика, биология, психология, лингвистика, математика, машиностроение. Одним из главных направлений искусственного интеллекта - разработка компьютерных функций, связанных с человеческим интеллектом, таких как: рассуждение, обучение и решение проблем.

Программа с ИИ и без ИИ

Программы с ИИ и без отличаются следующими свойствами:

Приложения с ИИ

ИИ стал доминирующим в различных областях, таких как:

    Игры - ИИ играет решающую роль в играх связанных с стратегией таких как, шахматы, покер, крестики - нолики и т.д., где компьютер способен просчитывать большое количество всевозможных решений, основанных на эвристических знаниях.

    Обработка естественного языка - это возможность общаться с компьютером, который понимает естественный язык, на котором говорят люди.

    Распознавание речи - некоторые интеллектуальные системы способны слышать и понимать язык, на котором человек общается с ними. Они могут обрабатывать различные акценты, сленги и т.д.

    Распознавание рукописного текста - программное обеспечение читает текст, написанный на бумаге с помощью ручки или на экране с помощью стилуса. Он может распознавать формы букв и преобразовать его в редактируемый текст.

    Умные роботы - роботы способные выполнять задачи, поставленные человеком. Они имеют датчики, для обнаружения физических данных из реального мира, такие как свет, тепло, движение, звук, удар и давление. Они имеют высоко производительные процессоры, несколько датчиков и огромную память. Кроме того они способны обучаться на собственных ошибках и адаптироваться к новой среде.

История развития ИИ

Вот история развития ИИ в течение 20-го века

Карел Чапек ставит пьесу в Лондоне под названием «Универсальные роботы», это стало первым использованием слова «робот» на английском.

Айзек Азимов, выпускник Колумбийского университета, вводит термин робототехника .

Алан Тьюринг разрабатывает тест Тьюринга для оценки интеллекта. Клод Шеннон публикует подробный анализ интеллектуальной шахматной игры.

Джон Маккарти вводит термин искусственный интеллект. Демонстрация первого запуска программы ИИ в университете Карнеги-Меллон.

Джон Маккарти изобретает язык программирования lisp для ИИ.

Диссертация Дэнни Боброва в МТИ показывает, что компьютеры могут понимать естественный язык достаточно хорошо.

Джозеф Weizenbaum в МТИ разрабатывает Элизу, интерактивного помощника, которая ведет диалог на английском языке.

Ученые из Стэнфордского научно-исследовательского института разработали Шеки, робота, оснащенного двигателями, способного воспринимать и решать некоторые задачи.

Группа исследователей в Эдинбургском университете построила Фредди, знаменитого шотландского робота, способного использовать зрение, чтобы найти и собрать модели.

Был построен первый компьютер-контролируемый автономный автомобиль, Стэнфордская тележка.

Гарольд Коэн разработал и продемонстрировал составление программы, Аарон.

Шахматная программа, которая обыгрывает чемпиона мира по шахматам Гарри Каспарова.

Интерактивный роботы питомцы станут коммерчески доступными. МТИ отображает Кисмет, робота с лицом, который выражает эмоции. Робот Номад исследует отдаленные районы Антарктиды и находит метеориты.

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...