Диены химические свойства и получение. Физические и химические свойства алкадиенов

Определение, гомологический ряд, номенклатура алкадиенов.

Алкадиены – органические соединения, углеводороды алифатического (ациклического) непредельного характера, в молекуле которых между атомами углерода – две двойные связи, и которые соответствуют общей формуле C n H 2 n -2 , где n =3 или n >3. Их также называют диеновыми углеводородами.

Простейшим представителем алкадиенов является пропадиен.

Гомологический ряд.

Общая формула диеновых углеводородов C n H 2n-2 . В названии алкадиенов содержится корень, обозначающий число атомов углерода в углеродной цепи, и суффикс –диен («две» «двойные связи»), обозначающий принадлежность соединения к данному классу.

C 3 H 4 – пропадиен

C 4 H 6 – бутадиен

C 5 H 8 – пентадиен

C 6 H 10 – гексадиен

C 7 H 12 – гептадиен

C 9 H 16 – нонадиен

Номенклатура алкадиенов.

1. Выбор главной цепи. Образование названия углеводорода по номенклатуре ИЮПАК начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкадиенов главную цепь необходимо выбирать так, чтобы в нее входили обе двойные связи.

2. Нумерация атомов главной цепи. Нумерация атомов главной цепи начинается с того конца, с которого ближе расположены по старшинству (по преимуществу):

кратная связь → заместитель → углеводородный радикал .

Т.е. при нумерации в определении названия алкадиена положение кратной связи имеет преимущество перед остальными.

Нумеровать атомы в цепи нужно таким образом, чтобы атомы углерода, связанные двойными связями, получили минимальные номера.

Если по положению двойных связей нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для алкенов.

3. Формирование названия. , После корня, обозначающего числа атомов углерода в цепи, и суффикса –диен, обозначающий принадлежность соединения к классу алкенов, через в конце названия указывают местоположение двойных связей в углеродной цепи, т.е. номер атомов углерода, у которых начинаются двойные связи.

Если есть заместители, то в начале названия указывают цифры − номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди – два, три – три, тетра − четыре, пента − пять) и название заместителя (метил. этил, пропил). Затем без пробелов и дефисов − название главной цепи. Главная цепь называется как углеводород − член гомологического ряда влкадиенов (пропадиен, бутадиен, пентадиен и т.д.).

4.1. Изомерия и номенклатура диенов

Диеновые углеводороды имеют две двойные связи в молекуле, т. е. на четыре атома водорода меньше, чем соответствующие им предельные уг­леводороды. Общая формула алкадиенов С n Н 2 n -2 . Поскольку для образо­вания двух двойных связей необходимо по крайней мере три атома углеро­да, в этом ряду гомологи с одним и двумя атомами углерода не существуют.

В зависимости от взаимного расположения двойных связей диеновые углеводороды можно разделить на три основных типа:

    диены с кумуллированными двойными связями, т.е. с двойными связями у одного углеродного атома (алленовые);

    диены с конъюгированными (сопряженными) двойными связями;

3) диены с изолированными двойными связями

Диены по систематической номенклатуре называются так же, как и этиленовые углеводороды, только вместо суффикса -ен ста­вится суффикс -адиен (так как двойных связей две). Положение двойных связей, как обычно, показывают цифрами. Для некоторых диенов сохра­нились тривиальные или старые рациональные названия:

СН 2 =С = СН 2 пропадиен, аллен

СН 3 -СН=С=СН 2 1,2-бутадиен, метилаллен

СН 2 =СН-СН=СН 2 1,3-бутадиен, дивинил

2-метил-1,3-бутадиен, изопрен

СН 3 -СН=СН-СН=СН 2 1,3-пентадиен, пиперилен

2,3-диметил-1,3-бутадиен

СН 2 =СН-СН 2 -СН 2 -СН=СН 2 1,5-гексадиен, диаллил

4.2. Способы получения диенов

Способы получения углеводородов диенов в большинстве слу­чаев не отличаются от способов получения олефинов, только соответству­ющие реакции необходимо проводить дважды или в качестве исходного вещества применять соединения, уже содержащие двойную связь.

4.2.1. Дегидрирование алкан-алкеновых фракций:

Дегидрирование бутан-бутеновых и пентан-пентеновых фракций над катализаторами (обычно используется Cr 2 О 3) приводят к образованию диенов:

4.2.2. Получение дивинила и изопрена дегидратацией гликолей

4.2.3. Дегидратация непредельных спиртов

4.2.4. Получение дивинила димеризацией ацетилена с последующим гидрированием

4.2. 5 . Синтез Реппе

Синтез основан на высокой подвижности водорода у тройной связи, благодаря чему он легко вступает во взаимодействие с карбонильными соединениями, в том числе и с метаналем:

Аналогично получают изопрен (способ Фаворского), используя в качестве карбонильного соединения ацетон.

4.3. Физические свойства и строение диенов

Алены (1,2-диены). В молекуле аллена и других соединений с кумулированными связями, π-связи располагаются в двух взаимно перпендикулярных плоскостях. Плоскости, в которых распо­лагаются две пары водородных атомов, также взаимно перпендикулярны. Два крайних угле­родных атома алленовой системы находятся в состоянии sp 2 -гибридизации, средний – sp-гибридизации (рис. 4).

Эти особенности квантово-механического строения проявляются в физических и химиче­ских свойствах алленов. В частности, в ряду алленов при двух различных заместителях у конеч­ных углеродных атомов возможна оптическая активность благодаря молекулярной асиммет­рии. Два пространственных изомера, относящи­еся друг к другу как предмет к своему зеркально­му изображению, при наложении не совпадают и, следовательно, представляют собой две раз­личные изомерные молекулы.

Рис. 4. Строения молекулы аллена

Для алленов характерны легкость гидрата­ции разбавленной серной кислотой с образова­нием кетонов, способность полимеризоваться или конденсироваться с другими непредельны­ми соединениями с образованием четырехчлен­ных циклов (С. В. Лебедев):

Сопряженные диены (1,3-диены). Сопряженные диены отличаются от алкенов большей устойчивостью, а также спо­собностью вступать в реакции присоединения по атомам 1,2 и 1,4 и большей ре­акционной способностью.

Две сопряженные π-связи образуют общее электронное облако - все четыре углеродных атома находятся в состоянии sp 2 -гибридизации. Это приводит к укорочению простой связи и к стабилизации молекулы. В молекуле дивинила π -связи образованы за счет перекрывания р-орбиталей атомов С 1 и С 2 , Сз и С 3 . Также возможно перекрыва­ние р-орбиталей атомов С 2 и С 3 . Возникающая в результате этого делокализация π -электронов делает молекулу более устойчивой, поскольку каждая пара электро­нов притягивается не двумя, а четырьмя ядрами углерода:

Рис. 5. Строение молекулы дивинила

Связь С 2 – С 3 приобретает некоторый характер двоесвязанности. Длина ее меньше, чем в алканах (1,48 Å), что вызвано эффектом сопряжения. Это и объяс­няет поведение диенов в реакциях электрофильного присоединения, где реагент может присоединяться не только к соседним атомам при кратной связи (1,2-присоединение), но и к двум концам сопряженной системы (1,4-присоединение).

Физические свойства диенов. Дивинил при обычных условиях – газ. Изопрен и другие простейшие алкадиены – жидкости. Обычные закономерности, свойственные гомо­логическим рядам углеводородов, действуют и в этом ряду.

Для алкадиенов с сопряженными двойными связями характерны ано­мально высокие показатели преломления света. Благодаря этой особен­ности найденные молекулярные рефракции алкадиенов значительно боль­ше вычисленных. Разница между найденной и вычисленной величинами составляет обычно 1–1,5 единицы. Она называется молекулярной экзальтацией .

Алкадиены поглощают ультрафиолетовое излучение в значительно бо­лее длинноволновой области, чем алкены. Например, 1,3-бутадиен погло­щает при 217 нм. Накопление в молекуле сопряженных двойных связей ведет к дальнейшему смещению максимума поглощения из ультрафиоле­товой области в видимую область: при четырех сопряженных двойных связях появляется желтая окраска.

В ИК-спектрах для 1,3-алкадиенов характерно снижение частоты и увеличение интенсивности полосы валентных колебаний двойных связей (примерно до 1600 см -1).

Наибольшее практическое значение имеют сопряженные диены.

Общая характеристика алкадиенов

Алкадиены являются представителями ненасыщенных углеводородов, которые содержат в своем углеродном скелете две двойные связи, поэтому их еще называют диеновыми углеводородами.

А вот что собой представляет общая формула гомологического ряда алкадиенов:

СnН2n-2.

Но, эта формула также соответствует и гомологическому ряду алкинов, а также циклоалкенов.

О наличии двух двойных связей в молекуле нам говорит название класса, где «ди» обозначает два, а «ен» переводится, как связь, то есть двойная связь.

Классификация диенов

Также следует отметить, что в зависимости от взаимного расположения двойных связей, диены можно разделить на такие группы, как:

Первая группа

Кумулированные диены. Это такие соединения, молекулы которых имеют две двойные связи расположены у одного и того же атома углерода (1,2-диены)

Вторая группа

Сопряженные диены. К ним относятся алкадиены, в молекулах, которых имеются две двойные связи, разделенные одинарной или одной простой связью:

Вот какой вид иногда могут иметь алкадиены, которые имеют сопряженные связи:

СН2-СН-СН-СН2

Третья группа

Изолированные диены. К ним относятся такие соединения, у которых молекулы имеют две двойные связи и притом эти двойные связи разделены несколькими одинарными

CH2=CH-CH2-CH=CH2

Изомерия и номенклатура

Если рассматривать изометрию алкадиенов, то здесь следует сказать, что для них характерна, как структурная изометрия, так и пространственная.

На рисунке внизу мы видим примеры структурной и пространственной изометрии:



Что же касательно составления названий алкадиенов, то здесь существуют следующие правила:

Во-первых, основная цепь в обязательном порядке должна содержать две двойные связи;
Во-вторых, нумерацию, как правило начинают с того конца, с которого ближе расположена кратная связь;
В-третьих, дают названия заменителям и указывают атомы углерода, от которого они отходят;
В-четвертых, атомы углерода дают название алкадиена, как правило, от тех атомов, от которых была образована двойная связь.

Получение алкадиенов

Если рассматривать вопрос получения диенов, то, как правило, используют:

1. Метод С.В.Лебедева. С его помощью в промышленности было налажено производство бутадиена из этилового спирта. В основе этого метода, который разработал Лебедев, лежит реакция:

425 °С, Аl2O3, ZnO
2СН3-СН2-ОН -----------------> СН9=СН-СН=СН9 + 2Н2O + Н2


Сергей Васильевич Лебедев был известным химиком, который посвятил свои научные исследования полимеризации, изомеризации и гидрогенизации непредельных углеводородов. С помощью полимеризации 1,3-бутадиена под действием натрия, ему удалось получить синтетический каучук.

2. Способ дегидрирования. Одним из распространенных промышленных методов получения бутадиена-1,3 является каталитическое дегидрирование н -бутана, которые выделяют из частей нефтеперегонки:

СН3-СН2-СН2-СН3 -> CH2=CH-СН=СН2 + 2Н2

При рассмотрении этого процесса, на его первой стадии может образовываться как бутен-1, так и бутен-2.



Изопрен (2-метилбутадиен-1,3) получают методом дегидрирования 2-метилбутана.

3. Способ дегидрогалогенирования. Для получения алкадиенов можно применять стандартный лабораторный, которым является способ реакции отщепления.

При воздействии спиртового раствора щелочи на дибромалканы, мы можем наблюдать процесс отщепления двух молекул галогеноводорода и образование двух двойных связей:


Физические свойства

Что касается физических свойств алкадиенов, то при изолированной двойной связи, они имеют такие же свойства, как и обычные алкены.

При обычных условиях, бутадиен-1,3 представляет собой легко сжижающийся газ, который имеет довольно неприятный запах. А изопрен и другие низшие диены, являются бесцветными легкокипящими жидкостями. Что касается высших диенов, то они представлены в виде твердых веществ.

Химические свойства

Как вам уже известно, химические и физические свойства алкадиенов имеют много общего с алкенами, хотя алкадиены с сопряженными связями имеют свои нюансы и являются более активными.

1. Для алкадиенов свойственна реакции присоединения, и они способны присоединять, как водород, так и галогены, и галогеноводороды.

Главной особенность диенов является то, что они обладают способностью присоединения не только молекулы 1,2, но и продукт присоединения 1,4:


Предпочтительное протекание реакции, как правило, зависимо от условий и способа проведения.

2. Следующим химическим свойством диенов является реакции полимеризации. Она может происходить под воздействием катионов или свободных радикалов. Как правило, такая полимеризация этих соединений приводит к образованию полимеров, которые обладают свойствами, напоминающими природный каучук. Поэтому можно сказать, что основной областью применения бутадиена и изопрена, является получение синтетического каучука.

Натуральный и синтетический каучуки. Резина

Пока человек не научился производить синтетический каучук, до тех пор в промышленности использовали натуральный каучук. Получали такой каучук с помощью каучуконосных растений, методом выделения млечного сока, то есть так называемого латекса. Наиболее ценным растением по выделению природного каучука считалась произрастающая в Латинской Америке гевея.

В этой области было проведено огромное количество исследований, которые выявили, что натуральный каучук имеет в своем составе цис-полиизопрен, то есть, это такой полимер, который по своему строению соответствует изопрену (2-метилбутадиену-1,3).

Но благодаря проведению различных опытов и исследований, американский изобретатель Чарльз Нельсон Гудьир сумел провести вулканизацию каучука. Им было обнаружено, что что при нагревании каучука с серой в итоге получается довольно таки эластичный материал, который даже по техническим характеристикам превосходит каучук. Вот таким методом Гудьиру удалось получить резину.

Чарльз Нельсон проведя вулканизацию, заметил, что за счет сульфидных мостиков происходит сшивание полимерных цепей и в итоге увеличивается прочность и устойчивость к различным органическим веществам и растворителям.


А так как в двадцатом веке начался стремительный рост промышленности, то и потребность в каучуке также возросла. Но использование в промышленных масштабах природного каучука было не рентабельно и довольно таки дорого, то ученым пришлось искать пути получения синтетического каучука.

Но, первоначально не все так просто складывалось в этой области, и первый полученный каучук отдаленно напоминал смолу, которая к тому же, при ее вулканизации имела очень плохое качество.

Как вам уже известно, из сегодняшнего урока, синтетический каучук был получен по методу химика С.В.Лебедева только в 1932 году, тогда же его производство и приобрело промышленные масштабы.

В основе такого технологически удобного способа получения каучука, лежала полимеризация бутадиена-1,3 с использованием такого катализатора, как металлический натрий.

Благодаря этой технологии удалось получить полибутадиен, который обладал довольно неплохими технологическими свойствами. Но и здесь не все было так гладко, как хотелось, потому что, полученный полимер был нестерео-регулярным и соответственно, произведенная на его основе резина не отличалась особой эластичностью и уступала качеству резины, полученной из природного каучука.

А вот изопреновые и стерео-регулярные полимеры ученым удалось получить только в пятидесятых годах двадцатого века.

Конечно же, в настоящее время, современные технологии в химической промышленности позволяют производить не один, а несколько видов синтетического каучука. Широкое использование в качестве мономеров получили такие типы синтетических каучуков, как изопреновый, бутадиеновый, хлоропреновый, стирольный и т.д.

Также, большой популярностью пользуется резина, которая произведена на основе сополимеров алкадиенов, сочлененными двойными связями, а также производные алкенов.

Для таких видов резины характерны: хорошая эластичность, прочность и морозоустойчивость. Кроме того, эти виды резины обладают пониженной газопроницаемостью, а также устойчивы к действию ультрафиолета и различных окислителей.

Домашнее задание

Ответьте на поставленные вопросы и решите данные задания.



3.1. - Ненасыщенные неразветвленные углеводороды с одной двойной связью называют, заменяя окончание -ан -ен. Наличие двух или более двойных связей обозначают окончаниями -адиен, -атриен и т. д. Родовые названия углеводородов (разветвленных и неразветвленных) с одной, двумя, тремя и т. д. двойными связами - алкены, алкадиены, алкатриены и т. д. Цепи нумеруют так, чтобы положения двойных связей обозначались наиболее низкими номерами. Примеры :



Сохраняются следующие несистематические названия:



3.2. - Ненасыщенные неразветвленные ациклические углеводороды с одной тройной связью называют, заменяя окончание -ан в названии соответствующего насыщенного углеводорода окончанием -ин. Наличие двух или более тройных связей обозначают окончаниями -адиин, -атриин и т. д. Родовые названия углеводородов (как разветвленных, так и неразветвленных) с одной, двумя, тремя и т. д. тройными связями - алкины, алкадиины, алкатриины и т. д. Цепь нумеруют так, чтобы положения тройных связей обозначались наиболее низкими номерами.

Название ацетилен для НС≡СН сохраняется.

3.3. - Ненасыщенные неразветвленные ациклические углеводороды, имеющие как двойные, так и тройные связи, называют, заменяя в названии соответствующего насыщенного углеводорода окончание -ан окончаниями -енин, -адиенин, -атриенин, -ендиин и т. д. Двойные и тройные связи должны получить возможно более низкие номера, даже если при этом -ин получит меньший номер чем -ен. Если же при нумерации возможен выбор, наименьшими номерами следует обозначить двойные связи.

Примеры :



3.4. - Ненасыщенные разветвленные ациклические углеводороды рассматривают как производные неразветвленных углеводородов, содержащих максимальное число двойных и тройных связей. Если при выборе цепи с максимальным числом ненасыщенных связей имеется несколько возможностей, - (1) выбирают цепь с наибольшим числом атомов углерода; (2) если в нескольких цепях число атомов углерода одинаково, выбирают цепь с максимальным числом двойных связей. В остальном поступают так же, как при наименовании насыщенных разветвленных ациклических углеводородов.

Цепь нумеруют таким образом, чтобы положение двойных и тройных связей было обозначено наименьшими номерами в соответствии с правилом А-3.3.

Примеры :





Название изопрен сохраняется только для незамещенного соединения.

Строение алкадиенов

Диеновые углеводороды или алкадиены – это непредельные углеводороды, содержащие две двойные углерод — углеродные связи. Общая формула алкадиенов C n H 2n-2 .

В зависимости от взаимного расположения двойных связей диены подразделяются на три типа:

1) углеводороды с кумулированными двойными связями, т.е. примыкающими к одному атому углерода. Например, пропадиен или аллен (CH 2 =C=CH 2);

2) углеводороды с изолированными двойными связями, т.е разделенными двумя и более простыми связями. Например, пентадиен -1,4 (CH 2 =CH–CH 2 –CH=CH 2);

3) углеводороды с сопряженными двойными связями, т.е. разделенными одной простой связью. Например, бутадиен -1,3 или дивинил (CH 2 =CH–CH=CH 2), 2-метилбутадиен -1,3 или изопрен

Наибольший интерес представляют углеводороды с сопряженными двойными связями.

Структурная изомерия

1. Изомерия положения сопряженных двойных связей:

2. Изомерия углеродного скелета:

3. Межклассовая изомерия с алкинами и циклоалкенами.

Например, формуле С 4 Н 6 соответствуют следующие соединения:

Пространственная изомерия

Диены, имеющие различные заместители при углеродных атомах у двойных связей, подобно алкенам, проявляют цис-транс- изомерию.

цис -изомер (слева), транс -изомер (справа)

Физические свойства алкадиенов

Бутадиен-1,3 – легко сжижающийся газ с неприятным запахом, t°пл.= -108,9°C, t°кип.= -4,5°C; растворяется в эфире, бензоле, не растворяется в воде.

2-Метилбутадиен-1,3 – летучая жидкость, t°пл.= -146°C, t°кип.= 34,1°C; растворяется в большинстве углеводородных растворителях, эфире, спирте, не растворяется в воде.

Атомы углерода в молекуле бутадиена-1,3 находятся в sp 2 — гибридном состоянии , что означает расположение этих атомов в одной плоскости и наличие у каждого из них одной p-орбитали, занятой одним электроном и расположенной перпендикулярно к упомянутой плоскости.

Схематическое изображение строения молекул дидивинила (слева) и вид модели сверху (справа).

Перекрывание электронных облаков между С1–С2 и С3–С4 больше, чем между С2–С3.

p-Орбитали всех атомов углерода перекрываются друг с другом, т.е. не только между первым и вторым, третьим и четвертым атомами, но и также между вторым и третьим. Отсюда видно, что связь между вторым и третьим атомами углерода не является простой s-связью, а обладает некоторой плотностью p-электронов, т.е. слабым характером двойной связи. Это означает, что s- электроны не принадлежат строго определенным парам атомов углерода. В молекуле отсутствуют в классическом понимании одинарные и двойные связи, а наблюдается делокализация p-электронов, т.е. равномерное распределение p-электронной плотности по всей молекуле с образованием единого p-электронного облака.

Взаимодействие двух или нескольких соседних p-связей с образованием единого p-электронного облака, в результате чего происходит передача взаимовлияния атомов в этой системе, называется эффектом сопряжения .

Таким образом, молекула бутадиена-1,3 характеризуется системой сопряженных двойных связей.

Такая особенность в строении диеновых углеводородов делает их способными присоединять различные реагенты не только к соседним углеродным атомам (1,2-присоединение), но и к двум концам сопряженной системы (1,4-присоединение) с образованием двойной связи между вторым и третьим углеродными атомами. Отметим, что очень часто продукт 1,4-присоединения является основным.

Рассмотрим реакции галогенирования и гидрогалогенирования сопряженных диенов

Как видно, реакции бромирования и гидрохлорирования приводят к продуктам 1,2- и 1,4- присоединения , причем количество последних зависит, в частности, от природы реагента и условий проведения реакции. При галогенировании, возможно не только 1,2- и 1,4- присоединение, так при галогенировании избытком галогена происходит разрыв обеих двойных связей с образованием одинарных связей и присоединением галогена к четырем атомам углерода при бывших двойных связях.

Важной особенностью сопряженных диеновых углеводородов является, кроме того, их способность вступать в реакцию полимеризации. Полимеризация, как и у олефинов, осуществляется под влиянием катализаторов или инициаторов.

Она может протекать по схемам 1,2- и 1,4- присоединения.

В упрощенном виде реакцию полимеризации бутадиена-1,3 по схеме 1,4 присоединения можно представить следующим образом:

В полимеризации участвуют обе двойные связи диена. В процессе реакции они разрываются, пары электронов, образующие s- связи разобщаются, после чего каждый неспаренный электрон участвует в образовании новых связей: электроны второго и третьего углеродных атомов в результате обобщения дают двойную связь, а электроны крайних в цепи углеродных атомов при обобщении с электронами соответствующих атомов другой молекулы мономера связывают мономеры в полимерную цепочку.

Элементная ячейка полибутадиена представляется следующим образом:

Как видно, образующийся полимер характеризуется транс -конфигурацией элементной ячейки полимера. Однако наиболее ценные в практическом отношении продукты получаются при стереорегулярной (иными словами, пространственно упорядоченной) полимеризации диеновых углеводородов по схеме 1,4-присоединения с образованием цис -конфигурации полимерной цепи. Например, цис-

Натуральный и синтетический каучуки

Натуральный каучук получают из млечного сока (латекса) каучуконосного дерева гевеи, растущего в тропических лесах Бразилии. При нагревании без доступа воздуха каучук распадается с образованием диенового углеводорода – 2- метилбутадиена-1,3 или изопрена. Каучук – это стереорегулярный полимер, в котором молекулы изопрена соединены друг с другом по схеме 1,4-присоединения с цис -конфигурацией полимерной цепи:

цис -полиизопрен (каучук)

Молекулярная масса натурального каучука колеблется в пределах от 7 . 10 4 до 2,5 . 10 6 . транс -Полимер изопрена также встречается в природе в виде гуттаперчи.

транс -полиизопрен (гуттаперча)

Натуральный каучук обладает уникальным комплексом свойств: высокой текучестью, устойчивостью к износу, клейкостью, водо- и газонепроницаемостью. Для придания каучуку необходимых физико-механических свойств: прочности, эластичности, стойкости к действию растворителей и агрессивных химических сред – каучук подвергают вулканизации нагреванием до 130-140°С с серой. В упрощенном виде процесс вулканизации каучука можно представить следующим образом:

Атомы серы присоединяются по месту разрыва некоторых двойных связей и линейные молекулы каучука «сшиваются» в более крупные трехмерные молекулы – получается резина, которая по прочности значительно превосходит невулканизированный каучук. Наполненные активной сажей каучуки в виде резин используют для изготовления автомобильных шин и других резиновых изделий.

В 1932 году С.В. Лебедев разработал способ синтеза синтетического каучука на основе бутадиена, получаемого из спирта. И лишь в пятидесятые годы отечественные ученые осуществили каталитическую стереополимеризацию диеновых углеводородов и получили стереорегулярный каучук, близкий по свойствам к натуральному каучуку. В настоящее время в промышленности выпускают каучук,

в котором содержание звеньев изопрена, соединенных в положении 1,4, достигает 99%, тогда как в натуральном каучуке они составляют 98%. Кроме того, в промышленности получают синтетические каучуки на основе других мономеров – например, изобутилена, хлоропрена, и натуральный каучук утратил свое монопольное положение.

Реакция Реакция Дильса - Альдера (диеновый синтез)

Реакция Дильса - Альдера представляет собой согласованное реакцию -циклоприсоединения диенофилов и сопряжённых диенов с образованием шестичленного цикла.

В случае замещенных диенов и диенофилов:

Для участия в реакции -циклоприсоединения диен принимает плоскую s-цис- конформацию, в которой обе двойные связи находятся по одну сторону от одинарной C–C-связи.

В реакцию вступают циклические и ациклические сопряжённые диены, енины -C=C-C≡C- или их гетероаналоги - соединения с фрагментами -С=С-С=О, -С=С-С≡N. Диенофилами обычно являются алкены и алкины с кратной связью, активированной электроноакцепторными заместителями. В роли диенофилов также могут выступать соединения, содержащие двойные связи с гетероатомом, например >С=О, >С=N-, -СN, -N=О, -S=O, -N=N-.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...