Формулы и правила дифференцирования (нахождения производной). Производная, правила и формулы дифференцирования

2. Основные правила дифференцирования

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) " = 0, (cu) " = cu";

2) (u+v)" = u"+v";

3) (uv)" = u"v+v"u;

4) (u/v)" = (u"v-v"u)/v 2;

Пример 1. Найти производную функции

Решение. Применяя правила (5) и (8) и формулу (4) дифференцирования степенной функции получим

Пример 2. Найти производную функции

Решение. Применим правило (7) дифференцирования произведения, а затем найдём производные сомножителей так же, как в примере 4. Тогда получим

Пример 3. Найти производную функции у =

Решение. Применим правило (10) дифференцирования частного:

Затем, так же как и выше, вычислим производные в числителе. Имеем

Текст задания:

Вариант 1

1. Найти производную функции .

2. Найти производную функции .

в точке с абсциссой , .

t

Вариант 2

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Вариант 3

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Вариант 4

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Вариант 5

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Вариант 6

1. Найти производную функции .

2. Найти производную функции .

3. Написать уравнение касательной к графику функции в точке с абсциссой , .

4. Материальная точка движется по закону . Найти скорость и ускорение в момент времени t =5 с. (Перемещение измеряется в метрах.)

Практическая работа № 16



Тема: Применение производной к исследованию функций и построению графиков

Цель работы: закрепить знания и умения студентов по освоению темы, формировать навыки прикладного использования аппарата производной.

Теоритическое обоснование:

Схема исследования функции и построение ее графика

I. Найти область определения функции.
II. Найти точки пересечения графика функции с осями координат.
III. Найти асимптоты.
IV. Найти точки возможного экстремума.
V. Найти критические точки.
VI. С помощью вспомогательного рисунка исследовать знак первой производных. Определить участки возрастания и убывания функции, точки экстремумов.
VII. Построить график, учитывая исследование, проведенное в п.1-6.

Во всех приведенных ниже формулах буквами u и v обозначены дифференцируемые функции независимой переменной x : , , а буквами a , c, n - постоянные:

1.

3.

4.

5.

6.

Остальные формулы записаны как для функций независимой переменной, так и для сложных функций:

8.

9.

11.

12.

13.

14.

15.

16.

17.

7а.

8а.

9а.

11а.

12а.

13а.

16а.

17а.

При решении приведенных ниже примеров сделаны подробные записи. Однако следует научиться дифференцировать без промежуточных записей.

Пример 1. Найти производную функции .

Решение. Данная функция есть алгебраическая сумма функций. Дифференцируем ее, используя формулы 3, 5, 7 и 8:

Пример 2. Найти производную функции

Решение. Применяя формулы 6, 3, 7 и 1, получим

Пример 3. Найти производную функции и вычислить ее значение при

Решение. Это сложная функция с промежуточным аргументом . Используя формулы 7а и 10, имеем

.

Пример 4. Найти производную функции .

Решение. Это сложная функция с промежуточным аргументом . Применяя формулы 3, 5, 7а, 11, 16а, получим

Пример 5. Найти производную функции .

Решение. Дифференцируем данную функцию по формулам 6, 12, 3 и 1:

Пример 6. Найти производную функции и вычислить ее значение при .

Решение. Сначала преобразуем функцию, используя свойства логарифмов :

Теперь дифференцируем по формулам 3, 16а, 7 и 1:

.

Вычислим значение производной при .

Пример 7. Найти производную функции и вычислить ее значение при .

Решение. Используем формулы 6, 3, 14а, 9а, 5 и 1:

.

Вычислим значение производной при :

.

Геометрический смысл производной.

Производная функции имеет простую и важную геометрическую интерпретацию .

Если функция дифференцируема в точке х , то график этой функции имеет в соответствующей точке касательную, причем угловой коэффициент касательной равен значению производной в рассматриваемой точке.

Угловой коэффициент касательной, проведенной к графику функции в точке (х 0 , у 0), равен значению производной функции при х = х 0 , т.е. .

Уравнение этой касательной имеет вид

Пример 8 . Составить уравнение касательной к графику функции в точке А (3,6).

Решение. Для нахождения углового коэффициента касательной найдем производную данной функции:

х = 3:

Уравнение касательной имеет вид

, или , т.е.

Пример 9. Составить уравнение касательной, проведенной к графику функции в точке с абсциссой х=2 .

Решение. Сначала найдем ординату точки касания . Так как точка А лежит на кривой, то ее координаты удовлетворяют уравнению кривой, т.е.


; .

Уравнение касательной, проведенной к кривой в точке , имеет вид . Для нахождения углового коэффициента касательной найдем производную:

.

Угловой коэффициент касательной равен значению производной функции при х = 2:

Уравнение касательной таково:

, , т.е.

Физический смысл производной. Если тело движется по прямой по закону s=s(t ), то за промежуток времени (от момента t до момента ) оно пройдет некоторый путь . Тогда есть средняя скорость движения за промежуток времени .

Скоростью движения тела в данный момент времени t называется предел отношения пути к приращению времени , когда приращение времени стремиться к нулю:

.

Следовательно, производная пути s по времени t равна скорости прямолинейного движения тела в данный момент времени:

.

Скорость протекания физических, химических и других процессов также выражается с помощью производной.

Производная функции равна скорости изменения этой функции при данном значении аргумента х :

Пример 10. Закон движения точки по прямой задан формулой (s - в метрах, t - в секундах). Найти скорость движения точки в конце первой секунды.

Решение. Скорость движения точки в данный момент времени равна производной пути s по времени t :

,

Итак, скорость движения точки в конце первой секунды равна 9 м/с.

Пример 11. Тело, брошенное вертикально вверх, движется по закону , где v 0 - начальная скорость, g - ускорение свободного падения тела. Найти скорость этого движения для любого момента времени t . Сколько времени будет подниматься тело и на какую высоту оно поднимется, если v 0 = 40 м/с?

Решение. Скорость движения точки в данный момент времени t равна производной пути s по времени t:

.

В высшей точке подъема скорость тела равна нулю:

, , , , с.

За 40/g секунд тело поднимается на высоту

, м.

Вторая производная.

Производная функции в общем случае является функцией от х . Если от этой функции вычислить производную, то получим производную второго порядка или вторую производную функции .

Второй производной функции называется производная от ее первой производной .

Вторая производная функции обозначается одним из символов - , , . Таким образом, .

Аналогично определяются и обозначаются производные любого порядка. Например, производная третьего порядка:

или ,

Пример 12. .

Решение. Сначала найдем первую производную

Пример 13. Найти вторую производную функции и вычислить ее значение при х=2 .

Решение. Сначала найдем первую производную:

Дифференцируя еще раз, найдем вторую производную:

Вычислим значение второй производной при х=2 ; имеем

Физический смысл второй производной.

Если тело движется прямолинейно по закону s = s(t) , то вторая производная пути s по времени t равна ускорению движения тела в данный момент времени t:

Таким образом, первая производная характеризует скорость некоторого процесса, а вторая производная - ускорение того же процесса.

Пример 14. Точка движется по прямой по закону . Найти скорость и ускорение движения .

Решение. Скорость движения тела в данный момент времени равна производной пути s по времени t, а ускорение - второй производной пути s по времени t . Находим:

; тогда ;

; тогда

Пример 15. Скорость прямолинейного движения пропорциональна квадратному корню из пройденного пути (как, например, при свободном падении). Доказать, что это движение происходит под действием постоянной силы.

Решение. По закону Ньютона , сила F, вызывающая движение, пропорциональна ускорению, т.е.

или

Согласно условию, . Дифференцируя это равенство, найдем

Следовательно, действующая сила .

Приложения производной к исследованию функции .

1) Условие возрастания функции : Дифференцируемая функция y = f(x) монотонно возрастает на промежутке Х тогда и только тогда, когда её производная больше ноля, т. е. y = f(x) f’(x) > 0 . Это условие геометрически означает, чтокасательная к графику данной функции образует острый угол с положительным направлением к оси оХ.

2) Условие убывания функции : Дифференцируемая функция y = f(x) монотонно убывает на промежутке Х тогда и только тогда, когда её производная меньше ноля, т. е.

y = f(x)↓ f’(x)Это условие геометрически означает, чтокасательная к графику данной функции образует тупой угол с положительным направлением оси оХ)

3) Условие постоянства функции: Дифференцируемая функция y = f(x) постоянна на промежутке Х тогда и только тогда, когда её производная равна нулю, т. е. y = f(x) - постоянна f’(x) = 0 . Это условие геометрически означает, чтокасательная к графику данной функции параллельна оси оХ, т. е. α = 0)

Экстремумы функции.

Определение 1 : Точку х = х 0 называют точкой минимума функции y = f(x), если у этой точки существует окрестность, для всех точек которой (кроме самой точки) выполняется неравенство f(x)> f(x 0)

Определение 2: Точку х = х 0 называют точкой максимума функции y = f(x), если у этой точки существует окрестность, для всех точек которой (кроме самой точки) выполняется неравенство f(x) < f(x 0).

Определение 3: Точку минимума или максимума функции называют точкой экстремума . Значение функции в этой точке называют экстремальным.

Замечания : 1. Максимум (минимум) не является обязательно наибольшим (наименьшим) значением функции;

2. Функция может иметь несколько максимумов или минимумо;

3. Функция, определённая на отрезке, может достигать экстремума только во внутренних точках этого отрезка.

5) Необходимое условие экстремума: Если функция y = f(x) имеет экстремум в точке х = х 0 , то в этой точке производная равна нулю или не существует. Эти точки называются критическими точками 1 рода .

6) Достаточные условия существования экстремума функции: Пусть функция y = f(x) непрерывна на промежутке Х и имеет внутри этого промежуткак ритическую точку 1 рода х = х 0 , то:

а) если у этой точки существует такая окрестность, в которой при х < х 0 f’(x) < 0, а при x> x 0 f’(x) > 0, то х = х 0 является точкой минимума функции y = f(x);

б) если у этой точки существует такая окрестность, в которой при х < х 0 f’(x) > 0, а при x> x 0

f’(x) < 0, то х = х 0 является точкой максимума функции y = f(x);

в) если у этой точки существует такая окрестность, что в ней и справа и слева от точки х 0 знаки производной одинаковы, то в точке х 0 экстремума нет.

Промежутки убывания или возрастания функции называются промежутками монотонности.

Определение1: Кривая у = f(x) называется выпуклой вниз на промежутке а < х <в, если она лежит выше касательной в любой точке этого промежутка и кривая у = f(x) называется выпуклой вверх на промежутке а < х <в, если она лежит ниже касательной в любой точке этого промежутка.

Определение 2: Промежутки, в которых график функции обращён выпуклостью вверх или вниз, называются промежутками выпуклости графика функции.

Достаточное условие выпуклости кривой. График дифференцируемой функции Y = f(x) является выпуклым вверх на промежутке а < х <в, если f”(x) < 0 и выпуклым вниз , если f”(x) > 0.

Определение 1: Точки, в которых вторая производная равна нулю или не существует, называются критическими точками II рода .

Определение 2: Точка графика функцииY = f(x), разделяющая промежутки выпуклости противоположенных направлений этого графика, называется точкой перегиб.

точка перегиба

Пример : Дана функция у = х 3 - 2х 2 + 6х - 4.Исследовать функцию на промежутки монотонности и точки экстремума. Определить направление выпуклости и точки перегиба.

Решение: 1. Найдем область определения функции: D(y) = ;

2. Найдем первую производную: y’ = 3x 2 - 4x+ 6;

3. Решим уравнение: y’ = 0, 3x 2 - 4x+ 6 = 0, D 0, то данное уравнение не имеет решения, следовательно точек экстремуму нет. y’ , то функция возрастает на всей области определения.

4. Найдем вторую производную:y” = 6x - 4;

5. Решим уравнение: y” = 0, 6x - 4 = 0, х =

Ответ: ( ; - ) - точка перегиба, функция выпукла вверх при х и выпукла вверх при х

Асимптоты.

1. Определение : Асимптотой кривой называется прямая, к которой неограниченно приближается график данной функции.

2. Виды асимптот :

1) Вертикальные асимптоты . График функции y = f(x) имеет вертикальную асимптоту, если . Уравнение вертикальной асимптоты имеет вид х = а

2) Горизонтальные асимптоты . График функции y = f(x) имеет горизонтальную асимптоту, если . Уравнение горизонтальной асимптоты имеет вид у = b.

Пример 1 : Для функция y = найдите асимптоты.

3) Наклонные асимптоты. Прямая y = kx + b называется наклонной асимптотой графика функции y = f(x), если . Значения k и b вычисляются по формулам: k = ; b = .

Решение: , то y = 0 - горизонтальная асимптота;

(т. к. х - 3 ≠ 0, х ≠3), то х = 3 - вертикальная асимптота. ,т. е. k = 0, то кривая наклонной асимптоты не имеет.

Пример 2 : Для функции y = найдите асимптоты.

Решение: x 2 - 25 ≠ 0 при x ≠ ± 5, то х = 5 и х = - 5 являются горизонтальными асимптотами;

y = , то кривая не имеет вертикальной асимптоты;

k = ; b = , т. е. y = 5x - наклонная асимптота.

Примеры построения графиков функций .

Пример 1 .

Исследовать функцию и построить график функции у = х 3 - 6х 2 + 9х - 3

1. Найдём область определения функции: D(y) = R

у(- х) = (- х) 3 - 6·(- х) 2 + 9·(-х) - 3 = - х 3 - 6х 2 - 9х - 3 = - (х 3 + 6х 2 + 9х + 3), т. е.

(у = х 5 - х 3 - нечетная, у = х 4 + х 2 - четная)

3. Не является периодической.

4. Найдем точки пересечения с осями координат: если х = 0, то у = - 3 (0; - 3)

если У = 0, х найти затруднительно.

5. Найдем асимптоты графика функции: Вертикальных асимптот нет, т.к. нет значений х, при которых функция неопределенна; у = , т. е. горизонтальных асимптот нет;

k = , т. е. наклонных асимптот нет.

6. Исследуем функцию на промежутки монотонности и её экстремумы: y’ = 3x 2 - 12x + 9,

y’= 0, 3x 2 - 12x + 9 = 0 x 1 = 1; x 2 = 3 - критические точки 1 рода.

Определим знаки производной: y’(0) = 9 > 0; y’(2) = - 3 < 0; y’(4) = 9 > 0

y max = y(1) = 1, (1;1) - точка максимума; y min = y(3) = - 3, (3; - 3) - точка минимума, функция у при х и у .

7. Исследуем функцию на промежутки выпуклости и точки перегиба:

y” = (y’)’ = (3x 2 - 12x + 9)’ = 6x - 12, y” = 0, 6x - 12 = 0 x = 2 - критическая точка 1 рода.

Определим знаки второй производной: y”(0) = - 12 < 0; y”(3) = 6 > 0

Y(2) = - 1 (2; - 1) - точка перегиба, функция выпукла вверх при х и выпукла вниз при х .

8. Дополнительные точки:

х - 1
у - 19

9. Построим график функции:

Исследовать функцию и построить график функции у =

1. Найдём область определения функции: 1 - х ≠ 0, х ≠ 1, D(y) = .

2. Выясним, является ли данная функция чётной или нечетной: ,

у(- х) ≠ у(х) - не является чётной и у(- х) ≠ - у(х) - не является нечётной

3. Не является периодической.

4. Найдем точки пересечения с осями координат: х = 0, то у = - 2; у = 0, , то , т. е. (0; - 2); ().

5. Найдем асимптоты графика функции: т.к. х ≠ 1,то прямая х = 1 - вертикальная асимптота;

Производная, правила и формулы дифференцирования

Пусть функция y = f(x) определена в промежутке X. Производной функции y = f(x) в точке х o называется предел

= .

Если этот предел конечный, то функция f(x) называется дифференцируемой в точке x o ; при этом она оказывается обязательно и непрерывной в этой точке.

Если же рассматриваемый предел равен ¥ (или - ¥), то при условии, что функция в точке х o непрерывна, будем говорить, что функция f(x) имеет в точке х o бесконечную производную .

Производная обозначается символами

y ¢, f ¢(x o), , .

Нахождение производной называется дифференцированием функции. Геометрический смысл производной состоит в том,что производная есть угловой коэффициент касательной к кривой y=f(x) в данной точке х o ; физический смысл - в том, что производная от пути по времени есть мгновенная скорость движущейся точки при прямолинейном движении s = s(t) в момент t o .

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) " = 0, (cu) " = cu";

2) (u+v)" = u"+v";

3) (uv)" = u"v+v"u;

4) (u/v)" = (u"v-v"u)/v 2;

5) если y = f(u), u = j(x), т.е. y = f(j(x)) - сложная функция, или суперпозиция , составленная из дифференцируемых функций j и f, то , или

6) если для функции y = f(x) существует обратная дифференцируемая функция x = g(y), причем ¹ 0, то .

На основе определения производной и правил дифференцирования можно составить список табличных производных основных элементарных функций.

1. (u m)" = m u m- 1 u" (m Î R ).

2. (a u)" = a u lna× u".

3. (e u)" = e u u".

4. (log a u)" = u"/(u ln a).

5. (ln u)" = u"/u.

6. (sin u)" = cos u× u".

7. (cos u)" = - sin u× u".

8. (tg u)" = 1/ cos 2 u× u".

9. (ctg u)" = - u" / sin 2 u.

10. (arcsin u)" = u" / .

11. (arccos u)" = - u" / .

12. (arctg u)" = u"/(1 + u 2).

13. (arcctg u)" = - u"/(1 + u 2).

Вычислим производную степенно-показательного выражения y=u v , (u>0), где u и v суть функции от х , имеющие в данной точке производные u" , v" .

Прологарифмировав равенство y=u v , получим ln y = v ln u.

Приравнивая производные по х от обеих частей полученного равенства с помощью правил 3, 5 и формулы для производной логарифмической функции, будем иметь:

y"/y = vu"/u +v" ln u, откуда y" = y (vu"/u +v" ln u).

(u v)"=u v (vu"/u+v" ln u), u > 0.

Например, если y = x sin x , то y" = x sin x (sin x/x + cos x× ln x).

Если функция y = f(x) дифференцируема в точке x , т.е. имеет в этой точке конечную производную y" , то = y"+a, где a®0 при Dх® 0; отсюда D y = y" Dх + a x.

Главная часть приращения функции, линейная относительно Dх, называется дифференциалом функции и обозначается dy: dy = y" Dх. Если положить в этой формуле y=x, то получим dx = x"Dх = 1×Dх =Dх, поэтому dy=y"dx, т. е. символ для обозначения производной можно рассматривать как дробь.

Приращение функции D y есть приращение ординаты кривой, а дифференциал dy есть приращение ординаты касательной.

Пусть мы нашли для функции y=f(x) ее производную y ¢= f ¢(x). Производная от этой производной называется производной второго порядка функции f(x), или второй производной, и обозначается .

Аналогично определяются и обозначаются:

производная третьего порядка - ,

производная четвертого порядка -

и вообще производная n-го порядка - .

Пример 3 .15. Вычислить производную функции y=(3x 3 -2x+1)×sin x.

Решение. По правилу 3, y"=(3x 3 -2x+1)"×sin x + (3x 3 -2x+1)×(sin x)" =
= (9x 2 -2)sin x + (3x 3 -2x+1)cos x.

Пример 3.16 . Найти y", y = tg x + .

Решение. Используя правила дифференцирования суммы и частного, получим: y"=(tgx + )" = (tgx)" + ()" = + = .

Пример 3 .17. Найти производную сложной функции y= ,
u=x 4 +1.

Решение. По правилу дифференцирования сложной функции, получим: y" x =y " u u" x =()" u (x 4 +1)" x =(2u + . Так как u=x 4 +1,то
(2 x 4 +2+ .

Пример 3 .18.

Решение. Представим функцию y= в виде суперпозиции двух функций: y = e u и u = x 2 . Имеем: y" x =y " u u" x = (e u)" u (x 2)" x = e u ×2x. Подставляя x 2 вместо u , получим y=2x .

Пример 3 .19. Найти производную функции y=ln sin x.

Решение. Обозначим u=sin x, тогда производная сложной функции y=ln u вычисляется по формуле y" = (ln u)" u (sin x)" x = .

Пример 3.20. Найти производную функции y= .

Решение. Случай сложной функции, полученной в результате нескольких суперпозиций, исчерпывается последовательным применением правила 5:

.

Пример 3.21 . Вычислить производную y=ln .

Решение. Логарифмируя и используя свойства логарифмов, получим:

y=5/3ln(x 2 +4) +7/3ln(3x-1)-2/3ln(6x 3 +1)-1/3tg 5x.

Дифференцируя обе части последнего равенства, получим:


Экстремум функции

Функция y=f(x) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство f(x 1) < f (x 2) (f(x 1) > f(x 2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f ¢(x) > 0 (f ¢(x) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f(x), если существует окрестность точки x о , для всех точек которой верно неравенство f(x) £ f(x о) (f(x) ³ f(x о)).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f(x), то либо f ¢(x о) = 0, либо f ¢(x о) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f ¢ (x) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную
f ¢ (x) в окрестности точки x о и вторую производную в самой точке x о . Если f ¢(x о) = 0, >0 ( <0), то точка x о является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.



На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f ¢ (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy. Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a. Поэтому y = a - 2x и S = x(a - 2x), где 0 £ x £ a/2 (длина и ширина площадки не могут быть отрицательными). S ¢ = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x < a/4 S ¢ >0, а при x >a/4 S ¢ <0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед).

Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16p » 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2pR(R+Н). Мы знаем объем цилиндра V = pR 2 Н Þ Н = V/pR 2 =16p/ pR 2 = 16/ R 2 . Значит, S(R) = 2p(R 2 +16/R). Находим производную этой функции:
S ¢(R) = 2p(2R- 16/R 2) = 4p (R- 8/R 2). S ¢(R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.

Таблица производных элементарных функций

Определение 1

Вычисление производной называют дифференцированием .

Обозначают производную $y"$ или $\frac{dy}{dx}$.

Замечание 1

Для нахождения производной функции согласно основным правилам дифференцирования превращают в другую функцию.

Рассмотрим таблицу производных. Обратим внимание на то, что функции после нахождения их производных преобразуются в другие функции.

Исключение составляет лишь $y=e^x$, превращающаяся сама в себя.

Правила дифференцирования производной

Чаще всего при нахождении производной требуется не просто посмотреть в таблицу производных, а вначале применить правила дифференцирования и доказательство производной произведения, и только потом использовать таблицу производных элементарных функций.

1. Постоянная выносится за знак производной

$C$ – постоянная (константа).

Пример 1

Продифференцировать функцию $y=7x^4$.

Решение.

Находим $y"=(7x^4)"$. Выносим число $7$ за знак производной, получаем:

$y"=(7x^4)"=7(x^4)"=$

используя таблицу, необходимо находить значение производной степенной функции:

$=7 \cdot 4x^3=$

Преобразуем результат к принятому в математике виду:

Ответ: $28x^3$.

2. Производная суммы (разницы) равна сумме (разнице) производных:

$(u \pm v)"=u" \pm v"$.

Пример 2

Продифференцировать функцию $y=7+x-5x^3+4 \sin x-9\sqrt{x^2}+\frac{4}{x^4} -11\cot x$.

Решение.

$y"=(7+x-5x^5+4 \sin x-9\sqrt{x^2}+\frac{4}{x^4} -11\cot x)"=$

применим правило дифференцирования производной суммы и разницы:

$=(7)"+(x)"-(5x^5)"+(4 \sin x)"-(9\sqrt{x^2})"+(\frac{4}{x^4})"-(11\cot x)"=$

отметим, что при дифференцировании все степени и корни необходимо преобразовать к виду $x^{\frac{a}{b}}$;

вынесем все постоянные за знак производной:

$=(7)"+(x)"-(5x^5)"+(4\sin x)"-(9x^{\frac{2}{5}})"+(4x^{-4})"-(11\cot x)"=$

$=(7)"+(x)"-5(x^5)"+4(\sin x)"-9(x^{\frac{2}{5}})"+4(x^{-4})"-11(\cot x)"=$

разобравшись с правилами дифференцирования, некоторые из них (например, как последние два) применяются одновременно во избежание переписывания длинного выражения;

мы получили выражение из элементарных функций, стоящих под знаком производной; воспользуемся таблицей производных:

$=0+1-5 \cdot 5x^4+4\cos x-9 \cdot \frac{2}{5} x^{-\frac{3}{5}}+12x^{-5}-11 \cdot \frac{-1}{\sin^2 x}=$

преобразуем к виду, принятому в математике:

$=1-25x^4+4 \cos x-\frac{18}{5\sqrt{x^3}}+\frac{12}{x^5} +\frac{11}{\sin^2 x}$

Обратим внимание, что при нахождении результата принято слагаемые с дробными степенями преобразовать в корни, а с отрицательными – в дроби.

Ответ : $1-25x^4+4 \cos x-\frac{18}{5\sqrt{x^3}}+\frac{12}{x^5} +\frac{11}{\sin^2 x}$.

3. Формула производной произведения функций:

$(uv)"=u" v+uv"$.

Пример 3

Продифференцировать функцию $y=x^{11} \ln x$.

Решение.

Сначала применим правило вычисления производной произведения функций, а затем используем таблицу производных:

$y"=(x^{11} \ln x)"=(x^{11})" \ln x+x^{11} (\lnтx)"=11x^{10} \ln x+x^{11} \cdot \frac{1}{x}=11x^{10} \ln x-\frac{x^{11}}{x}=11x^{10} \ln x-x^{10}=x^{10} (11 \ln x-1)$.

Ответ : $x^{10} (11 \ln x-1)$.

4. Формула производной частной функции:

$(\frac{u}{v})"=\frac{u" v-uv"}{v^2}$.

Пример 4

Продифференцировать функцию $y=\frac{3x-8}{x^5-7}$.

Решение.

$y"=(\frac{3x-8}{x^5-7})"=$

по правилам приоритета математических операций сначала выполним деление, а потом сложение и вычитание, поэтому применим сначала правило вычисления производной частного:

$=\frac{(3x-8)" (x^5-7)-(3x-8) (x^5-7)"}{(x^5-7)^2} =$

применим правила производных суммы и разности, раскроем скобки и упростим выражение:

$=\frac{3(x^5-7)-5x^4 (3x-8)}{(x^5-7)^2} =\frac{3x^5-21-15x^5+40x^4}{(x^5-7)^2} =\frac{-12x^5+40x^4-21}{(x^5-7)^2}$ .

Ответ: $\frac{-12x^5+40x^4-21}{(x^5-7)^2}$.

Пример 5

Продифференцируем функцию $y=\frac{x^7-2x+3}{x}$.

Решение.

Функция y является частным двух функций, поэтому можно применить правило вычисления производной частного, но в таком случае получим громоздкую функцию. Для упрощения данной функции можно почленно разделить числитель на знаменатель:

$y=\frac{x^7-13x+9}{x}=x^6-13+\frac{9}{x}$.

Применим к упрощенной функции правило дифференцирования суммы и разности функций:

$y"=(x^6-13+\frac{9}{x})"=(x^6)"+(-13)"+9(x^{-1})"=6x^5+0+9 \cdot (-x^{-2})=$

$=6x^5-\frac{9}{x^2}$.

Ответ : $6x^5-\frac{9}{x^2}$.

Пусть функция y = f(x) определена в промежутке X. Производной функции y = f(x) в точке х o называется предел

= .

Если этот предел конечный, то функция f(x) называется дифференцируемой в точке x o ; при этом она оказывается обязательно и непрерывной в этой точке.

Если же рассматриваемый предел равен  (или - ), то при условии, что функция в точке х o непрерывна, будем говорить, что функция f(x) имеет в точке х o бесконечную производную .

Производная обозначается символами

y , f (x o), , .

Нахождение производной называется дифференцированием функции. Геометрический смысл производной состоит в том,что производная есть угловой коэффициент касательной к кривой y=f(x) в данной точке х o ; физический смысл - в том, что производная от пути по времени есть мгновенная скорость движущейся точки при прямолинейном движении s = s(t) в момент t o .

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) " = 0, (cu) " = cu";

2) (u+v)" = u"+v";

3) (uv)" = u"v+v"u;

4) (u/v)" = (u"v-v"u)/v 2;

5) если y = f(u), u = (x), т.е. y = f((x)) - сложная функция, или суперпозиция , составленная из дифференцируемых функций  и f, то , или

6) если для функции y = f(x) существует обратная дифференцируемая функция x = g(y), причем  0, то .

На основе определения производной и правил дифференцирования можно составить список табличных производных основных элементарных функций.

1. (u )" =  u  1 u" (  R ).

2. (a u)" = a u lna u".

3. (e u)" = e u u".

4. (log a u)" = u"/(u ln a).

5. (ln u)" = u"/u.

6. (sin u)" = cos u u".

7. (cos u)" = - sin u u".

8. (tg u)" = 1/ cos 2 u u".

9. (ctg u)" = - u" / sin 2 u.

10. (arcsin u)" = u" / .

11. (arccos u)" = - u" / .

12. (arctg u)" = u"/(1 + u 2).

13. (arcctg u)" = - u"/(1 + u 2).

Вычислим производную степенно-показательного выражения y=u v , (u>0), где u и v суть функции от х , имеющие в данной точке производные u" , v" .

Прологарифмировав равенство y=u v , получим ln y = v ln u.

Приравнивая производные по х от обеих частей полученного равенства с помощью правил 3, 5 и формулы для производной логарифмической функции, будем иметь:

y"/y = vu"/u +v" ln u, откуда y" = y (vu"/u +v" ln u).

(u v)"=u v (vu"/u+v" ln u), u > 0.

Например, если y = x sin x , то y" = x sin x (sin x/x + cos x ln x).

Если функция y = f(x) дифференцируема в точке x , т.е. имеет в этой точке конечную производную y" , то = y"+, где 0 при х 0; отсюда  y = y" х +  x.

Главная часть приращения функции, линейная относительно х, называется дифференциалом функции и обозначается dy: dy = y" х. Если положить в этой формуле y=x, то получим dx = x"х = 1х =х, поэтому dy=y"dx, т. е. символ для обозначения производной можно рассматривать как дробь.

Приращение функции  y есть приращение ординаты кривой, а дифференциал dy есть приращение ординаты касательной.

Пусть мы нашли для функции y=f(x) ее производную y = f (x). Производная от этой производной называется производной второго порядка функции f(x), или второй производной, и обозначается .

Аналогично определяются и обозначаются:

производная третьего порядка - ,

производная четвертого порядка -

и вообще производная n-го порядка - .

Пример 3 .15. Вычислить производную функции y=(3x 3 -2x+1)sin x.

Решение. По правилу 3, y"=(3x 3 -2x+1)"sin x + (3x 3 -2x+1)(sin x)" = = (9x 2 -2)sin x + (3x 3 -2x+1)cos x.

Пример 3.16 . Найти y", y = tg x + .

Решение. Используя правила дифференцирования суммы и частного, получим: y"=(tgx + )" = (tgx)" + ()" = + = .

Пример 3 .17. Найти производную сложной функции y= , u=x 4 +1.

Решение. По правилу дифференцирования сложной функции, получим: y" x =y " u u" x =()" u (x 4 +1)" x =(2u + . Так как u=x 4 +1,то (2 x 4 +2+ .

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...