Степенная функция, ее свойства и графики. Степенная функция, ее свойства и график График функции y x 2n

1. Степенная функция, ее свойства и график;

2. Преобразования:

Параллельный перенос;

Симметрия относительно осей координат;

Симметрия относительно начала координат;

Симметрия относительно прямой y = x;

Растяжение и сжатие вдоль осей координат.

3. Показательная функция, ее свойства и график, аналогичные преобразования;

4. Логарифмическая функция , ее свойства и график;

5. Тригонометрическая функция, ее свойства и график, аналогичные преобразования (y = sin x; y = cos x; y = tg x);

Функция: y = x\n - ее свойства и график.

Степенная функция, ее свойства и график

y = x, y = x 2 , y = x 3 , y = 1/x и т. д. Все эти функции являются частными случаями степенной функции, т. е. функции y = x p , где p - заданное действительное число.
Свойства и график степенной функции существенно зависит от свойств степени с действительным показателем, и в частности от того, при каких значениях x и p имеет смысл степень x p . Перейдем к подобному рассмотрению различных случаев в зависимости от
показателя степени p.

  1. Показатель p = 2n - четное натуральное число.

y = x 2n , где n - натуральное число, обладает следующими свойствами:

  • область определения - все действительные числа, т. е. множество R;
  • множество значений - неотрицательные числа, т. е. y больше или равно 0;
  • функция y = x 2n четная, так как x 2n = (-x) 2n
  • функция является убывающей на промежутке x < 0 и возрастающей на промежутке x > 0.

График функции y = x 2n имеет такой же вид, как например график функции y = x 4 .

2. Показатель p = 2n - 1 - нечетное натуральное число

В этом случае степенная функция y = x 2n-1 , где натуральное число, обладает следующими свойствами:

  • область определения - множество R;
  • множество значений - множество R;
  • функция y = x 2n-1 нечетная, так как (-x) 2n-1 = x 2n-1 ;
  • функция является возрастающей на всей действительной оси.

График функции y = x 2n-1 y = x 3 .

3. Показатель p = -2n , где n - натуральное число.

В этом случае степенная функция y = x -2n = 1/x 2n обладает следующими свойствами:

  • множество значений - положительные числа y>0;
  • функция y = 1/x 2n четная, так как 1/(-x) 2n = 1/x 2n ;
  • функция является возрастающей на промежутке x0.

График функции y = 1/x 2n имеет такой же вид, как, например, график функции y = 1/x 2 .

4. Показатель p = -(2n-1) , где n - натуральное число.
В этом случае степенная функция y = x -(2n-1) обладает следующими свойствами:

  • область определения - множество R, кроме x = 0;
  • множество значений - множество R, кроме y = 0;
  • функция y = x -(2n-1) нечетная, так как (-x) -(2n-1) = -x -(2n-1) ;
  • функция является убывающей на промежутках x < 0 и x > 0 .

График функции y = x -(2n-1) имеет такой же вид, как, например, график функции y = 1/x 3 .


На области определения степенной функции y = x p имеют место следующие формулы:
; ;
;
; ;
; ;
; .

Свойства степенных функций и их графики

Степенная функция с показателем равным нулю, p = 0

Если показатель степенной функции y = x p равен нулю, p = 0 , то степенная функция определена для всех x ≠ 0 и является постоянной, равной единице:
y = x p = x 0 = 1, x ≠ 0 .

Степенная функция с натуральным нечетным показателем, p = n = 1, 3, 5, ...

Рассмотрим степенную функцию y = x p = x n с натуральным нечетным показателем степени n = 1, 3, 5, ... . Такой показатель также можно записать в виде: n = 2k + 1 , где k = 0, 1, 2, 3, ... - целое не отрицательное. Ниже представлены свойства и графики таких функций.

График степенной функции y = x n с натуральным нечетным показателем при различных значениях показателя степени n = 1, 3, 5, ... .

Область определения: -∞ < x < ∞
Множество значений: -∞ < y < ∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при -∞ < x < 0 выпукла вверх
при 0 < x < ∞ выпукла вниз
Точки перегибов: x = 0, y = 0
x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1,
y(-1) = (-1) n ≡ (-1) 2k+1 = -1
при x = 0, y(0) = 0 n = 0
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = 1 , функция является обратной к самой себе: x = y
при n ≠ 1 , обратной функцией является корень степени n :

Степенная функция с натуральным четным показателем, p = n = 2, 4, 6, ...

Рассмотрим степенную функцию y = x p = x n с натуральным четным показателем степени n = 2, 4, 6, ... . Такой показатель также можно записать в виде: n = 2k , где k = 1, 2, 3, ... - натуральное. Свойства и графики таких функций даны ниже.

График степенной функции y = x n с натуральным четным показателем при различных значениях показателя степени n = 2, 4, 6, ... .

Область определения: -∞ < x < ∞
Множество значений: 0 ≤ y < ∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x ≤ 0 монотонно убывает
при x ≥ 0 монотонно возрастает
Экстремумы: минимум, x = 0, y = 0
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1 , y(-1) = (-1) n ≡ (-1) 2k = 1
при x = 0, y(0) = 0 n = 0
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = 2 , квадратный корень:
при n ≠ 2 , корень степени n :

Степенная функция с целым отрицательным показателем, p = n = -1, -2, -3, ...

Рассмотрим степенную функцию y = x p = x n с целым отрицательным показателем степени n = -1, -2, -3, ... . Если положить n = -k , где k = 1, 2, 3, ... - натуральное, то ее можно представить в виде:

График степенной функции y = x n с целым отрицательным показателем при различных значениях показателя степени n = -1, -2, -3, ... .

Нечетный показатель, n = -1, -3, -5, ...

Ниже представлены свойства функции y = x n с нечетным отрицательным показателем n = -1, -3, -5, ... .

Область определения: x ≠ 0
Множество значений: y ≠ 0
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно убывает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вверх
при x > 0 : выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
; ; ;
Частные значения:
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = -1 ,
при n < -2 ,

Четный показатель, n = -2, -4, -6, ...

Ниже представлены свойства функции y = x n с четным отрицательным показателем n = -2, -4, -6, ... .

Область определения: x ≠ 0
Множество значений: y > 0
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно возрастает
при x > 0 : монотонно убывает
Экстремумы: нет
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак: y > 0
Пределы:
; ; ;
Частные значения:
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = -2 ,
при n < -2 ,

Степенная функция с рациональным (дробным) показателем

Рассмотрим степенную функцию y = x p с рациональным (дробным) показателем степени , где n - целое, m > 1 - натуральное. Причем, n, m не имеют общих делителей.

Знаменатель дробного показателя - нечетный

Пусть знаменатель дробного показателя степени нечетный: m = 3, 5, 7, ... . В этом случае, степенная функция x p определена как для положительных, так и для отрицательных значений аргумента x . Рассмотрим свойства таких степенных функций, когда показатель p находится в определенных пределах.

Показатель p отрицательный, p < 0

Пусть рациональный показатель степени (с нечетным знаменателем m = 3, 5, 7, ... ) меньше нуля: .

Графики степенных функций с рациональным отрицательным показателем при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = -1, -3, -5, ...

Приводим свойства степенной функции y = x p с рациональным отрицательным показателем , где n = -1, -3, -5, ... - нечетное отрицательное целое, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: x ≠ 0
Множество значений: y ≠ 0
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно убывает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вверх
при x > 0 : выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
; ; ;
Частные значения:
при x = -1, y(-1) = (-1) n = -1
при x = 1, y(1) = 1 n = 1
Обратная функция:

Четный числитель, n = -2, -4, -6, ...

Свойства степенной функции y = x p с рациональным отрицательным показателем , где n = -2, -4, -6, ... - четное отрицательное целое, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: x ≠ 0
Множество значений: y > 0
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно возрастает
при x > 0 : монотонно убывает
Экстремумы: нет
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак: y > 0
Пределы:
; ; ;
Частные значения:
при x = -1, y(-1) = (-1) n = 1
при x = 1, y(1) = 1 n = 1
Обратная функция:

Показатель p положительный, меньше единицы, 0 < p < 1

График степенной функции с рациональным показателем (0 < p < 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = 1, 3, 5, ...

< p < 1 , где n = 1, 3, 5, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < +∞
Множество значений: -∞ < y < +∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при x < 0 : выпукла вниз
при x > 0 : выпукла вверх
Точки перегибов: x = 0, y = 0
Точки пересечения с осями координат: x = 0, y = 0
Знак:
при x < 0, y < 0
при x > 0, y > 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = -1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Четный числитель, n = 2, 4, 6, ...

Представлены свойства степенной функции y = x p с рациональным показателем , находящимся в пределах 0 < p < 1 , где n = 2, 4, 6, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < +∞
Множество значений: 0 ≤ y < +∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 : монотонно убывает
при x > 0 : монотонно возрастает
Экстремумы: минимум при x = 0, y = 0
Выпуклость: выпукла вверх при x ≠ 0
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Знак: при x ≠ 0, y > 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = 1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Показатель p больше единицы, p > 1

График степенной функции с рациональным показателем (p > 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Нечетный числитель, n = 5, 7, 9, ...

Свойства степенной функции y = x p с рациональным показателем, большим единицы: . Где n = 5, 7, 9, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < ∞
Множество значений: -∞ < y < ∞
Четность: нечетная, y(-x) = - y(x)
Монотонность: монотонно возрастает
Экстремумы: нет
Выпуклость:
при -∞ < x < 0 выпукла вверх
при 0 < x < ∞ выпукла вниз
Точки перегибов: x = 0, y = 0
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = -1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Четный числитель, n = 4, 6, 8, ...

Свойства степенной функции y = x p с рациональным показателем, большим единицы: . Где n = 4, 6, 8, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область определения: -∞ < x < ∞
Множество значений: 0 ≤ y < ∞
Четность: четная, y(-x) = y(x)
Монотонность:
при x < 0 монотонно убывает
при x > 0 монотонно возрастает
Экстремумы: минимум при x = 0, y = 0
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = -1, y(-1) = 1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Знаменатель дробного показателя - четный

Пусть знаменатель дробного показателя степени четный: m = 2, 4, 6, ... . В этом случае, степенная функция x p не определена для отрицательных значений аргумента. Ее свойства совпадают со свойствами степенной функции с иррациональным показателем (см. следующий раздел).

Степенная функция с иррациональным показателем

Рассмотрим степенную функцию y = x p с иррациональным показателем степени p . Свойства таких функций отличаются от рассмотренных выше тем, что они не определены для отрицательных значений аргумента x . Для положительных значений аргумента, свойства зависят только от величины показателя степени p и не зависят от того, является ли p целым, рациональным или иррациональным.

y = x p при различных значениях показателя p .

Степенная функция с отрицательным показателем p < 0

Область определения: x > 0
Множество значений: y > 0
Монотонность: монотонно убывает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Пределы: ;
Частное значение: При x = 1, y(1) = 1 p = 1

Степенная функция с положительным показателем p > 0

Показатель меньше единицы 0 < p < 1

Область определения: x ≥ 0
Множество значений: y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вверх
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0 .
При x = 1, y(1) = 1 p = 1

Показатель больше единицы p > 1

Область определения: x ≥ 0
Множество значений: y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0 .
При x = 1, y(1) = 1 p = 1

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

График функции y = ax 2 + n .

Пояснение.

y = 2x 2 + 4.
y = 2x 2 , перемещается на четыре единицы вверх по оси y . Разумеется, при этом все значения y закономерно увеличиваются на 4.

Вот таблица значений функции y = 2x 2:

x

y

А вот таблица значений y = 2x 2 + 4:

x

y

Мы видим по таблице, что вершина параболы второй функции на 4 единицы выше вершины параболы первой (ее координаты 0;4). А значения y второй функции на 4 больше значений y первой функции.

График функции y = a (x m ) 2 .

Пояснение.

Например, надо построить график функции y = 2 (x – 6) 2 .
Это значит, что парабола, которая является графиком функции y = 2x 2 , перемещается на шесть единиц вправо вдоль оси x (на графике – красная парабола).



График функции y = a (x m ) 2 + n.

Две функции приводят нас к третьей функции: y = a (x m ) 2 + n.

Пояснение:

Например, надо построить график функции y = 2 (x – 6) 2 + 2.
Это значит, что парабола, которая является графиком функции y = 2x 2 , перемещается на 6 единиц вправо (значение m) и на 2 единицы вверх (значение n). Красная парабола на графике – результат этих перемещений.

Вы знакомы с функциями y=x, y=x 2 , y=x 3 , y=1/x и т. д. Все эти функции являются частными случаями степенной функции, т. е. функцииy=x p , где p - заданное действительное число. Свойства и график степенной функции существенно зависит от свойств степени с действительным показателем, и в частности от того, при каких значенияхx иp имеет смысл степеньx p . Перейдем к подобному рассмотрению различных случаев в зависимости от показателя степениp.

    Показатель p=2n -четное натуральное число.

В этом случае степенная функция y=x 2n , гдеn - натуральное число, обладает следующими

свойствами:

    область определения - все действительные числа, т. е. множество R;

    множество значений - неотрицательные числа, т. е. y больше или равно 0;

    функция y=x 2n четная, так какx 2n =(-x) 2n

    функция является убывающей на промежутке x<0 и возрастающей на промежутке x>0.

График функции y=x 2n имеет такой же вид, как например график функцииy=x 4 .

2. Показатель p=2n-1 - нечетное натуральное число В этом случае степенная функцияy=x 2n-1 , где натуральное число, обладает следующими свойствами:

    область определения - множество R;

    множество значений - множество R;

    функция y=x 2n-1 нечетная, так как (-x) 2n-1 =x 2n-1 ;

    функция является возрастающей на всей действительной оси.

График функции y=x2n-1 имеет такой же вид, как, например, график функцииy=x3 .

3.Показатель p=-2n , гдеn - натуральное число.

В этом случае степенная функция y=x -2n =1/x 2n обладает следующими свойствами:

    множество значений - положительные числа y>0;

    функция y=1/x 2n четная, так как1/(-x) 2n =1/x 2n ;

    функция является возрастающей на промежутке x<0 и убывающей на промежутке x>0.

График функции y=1/x 2n имеет такой же вид, как, например, график функции y=1/x 2 .

4.Показатель p=-(2n-1) , гдеn - натуральное число. В этом случае степенная функцияy=x -(2n-1) обладает следующими свойствами:

    область определения - множество R, кроме x=0;

    множество значений - множество R, кроме y=0;

    функция y=x -(2n-1) нечетная, так как (-x) -(2n-1) =-x -(2n-1) ;

    функция является убывающей на промежутках x<0 иx>0 .

График функции y=x -(2n-1) имеет такой же вид, как, например, график функцииy=1/x 3 .

      1. Обратные тригонометрические функции, их свойства и графики.

Обратные тригонометрические функции, их свойства и графики. Обра́тные тригонометри́ческие фу́нкции (круговые функции , аркфункции ) - математические функции, являющиеся обратными к тригонометрическим функциям.

    1. Функция arcsin

График функции .

Арксинусом числа m называется такое значение угла x , для которого

Функция непрерывна и ограничена на всей своей числовой прямой. Функция является строго возрастающей.

      1. [Править]Свойства функции arcsin

      1. [Править]Получение функции arcsin

Дана функция На всей своей области определения она является кусочно-монотонной , и, значит, обратное соответствие функцией не является. Поэтому мы рассмотрим отрезок, на котором она строго возрастает и принимает все значения области значений - . Так как для функции на интервале каждому значению аргумента соответствует единственное значение функции, то на этом отрезке существует обратная функция график которой симметричен графику функции на отрезке относительно прямой

Функция у = х2n ,где n принадлежит множеству целых положительных чисел. Степенная функция такого вида имеет чётный положительный показатель степени а=2n. Так как всегда х2n=(-х)2n, то графики всех таких функций симметричны относительно оси ординат. Все функции вида у = х2n, n принадлежит множеству целых положительных чисел имеют следующие одинаковые свойства: Х=R Х? =(-?;?) У=}

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...