Биография леонарда эйлера. Биография леонарда эйлера 1752 леонард эйлер максимальная длина волны

Вступление

Эйлер принадлежит к числу гениев, чьё творчество стало достоянием всего человечества. До сих пор школьники всех стран изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. Студенты проходят высшую математику по руководствам, первыми образцами которых явились классические монографии Эйлера. <Рисунок 1 >.
Наш сегодняшний урок посвящен этому великому человеку. Сначала я хочу предоставить слово Н. П. Долбилину, доценту физико-математических наук, ведущему научному сотруднику Математического института РАН (показывается фрагмент выступления Н. П. Долбилина на VI Московском педагогическом марафоне учебных предметов время 1.15 – 2.40).

Имя Эйлера мы вспоминаем при изучении логарифмов на первом курсе. Именно в честь великого Леонарда Эйлера по первой букве его фамилии и названо число е. Именно он ввёл обозначение е для основания натуральных логарифмов. <Рисунок 2 >. Леонард Эйлер внёс много нового в разделы математики изучающие тригонометрию, логарифмы, многогранники, комплексные числа, графы. Он ввёл много обозначений, которыми мы пользуемся в настоящее время: 1734 – обозначение функции f(x) , 1736 – обозначение основания натурального логарифма е и отношение длины окружности к диаметру круга , 1748 – обозначение тригонометрических функций sinx и cosx , 1753 – обозначение тригонометрической функции tgx , 1755 – знак суммы , 1777 – обозначение мнимой единицы i. <Рисунок 3 >.

Формула Эйлера

Имя Эйлера носит формула, связывающая число вершин (В), рёбер (Р) и граней (Г) выпуклого многогранника: В – Р + Г = ?. <Рисунок 4 >.

Задание 1

Сейчас перед вами появятся изображения многогранников: треугольной призмы, параллелепипеда, треугольной пирамиды, усечённой пятиугольной пирамиды, правильный октаэдр, правильный додекаэдр. Ваша задача – посчитать число вершин, рёбер и граней у этих многогранников и вычислить для каждого из них В – Р + Г = ?. За каждый правильный ответ команда получает по 1 баллу. На выполнение этой задачи 10 минут.
На экране появляются изображения многогранников, а затем после того, как команды передадут свои решения жюри ответы: <Рисунок 5 >, <Рисунок 6 >, <Рисунок 7 >.
Эту закономерность Леонард Эйлер обнаружил в 1752 году, а позднее доказал её.

Детство Эйлера. Базельский период его жизни.

Леонард Эйлер родился 4 апреля 1707 года в семье небогатого протестанского священника Пауля Эйлера и Маргариты Брукер в швейцарском городе Базеле на живописном берегу Рейна. В то время Базель являлся центром образования и культуры европейского масштаба. <Рисунок 8 >.
Леонарду было около года, когда семья переехала в местечко Рихен, недалеко от Базеля, куда отец Леонардо был переведён пастором.
Первоначальное образование Леонард получил от отца. Пастор готовил своего сына для духовной карьеры, но учил его так же и математике, в качестве развлечения и развития логического мышления. После домашнего обучения Леонард был отправлен в базельскую латинскую гимназию.
В 1720 году 13-летний Леонард Эйлер стал студентом факультета искусств Базельского университета. Став студентом, он легко усваивал учебные предметы, отдавая предпочтение математике. В эти годы он подружился с семьей Бернулли. Профессор И. Бернулли заметил в молодом человеке талант и стал индивидуально заниматься с Леонардом.
В 1724 году 17-летний Леонард Эйлер произнёс по-латыни великолепную речь о сравнении философских воззрений Декарта и Ньютона и был удостоен степени магистра (что теперь соответствует степени доктора философии). В последующие два года юный Эйлер написал несколько научных работ, получивших положительные отзывы. В 1725 году он выиграл конкурс Парижской Академии наук за решение проблемы выбора наилучшего места на корабле для установки мачты, интересно, что к этому времени он ни разу не видел, ни моря, ни морских судов.

Многочлен Эйлера

Многочлен Эйлера – это многочлен х 2 – х + 41. Леонард Эйлер вычислил его значение при х от 1 до 40 и заметил закономерность.

Задание 2

Вам необходимо вычислить значение этого многочлена при х от 1 до 20. За каждый правильный ответ команда получает 1 балл. Если вы сумеете отгадать закономерность, то получите ещё 10 баллов. <Рисунок 9 >. На выполнение этой задачи 10 минут.

Математиков всегда интересовали простые числа. Ещё Евклид утверждал, что в натуральном ряду простых чисел бесконечно много. В 1750 году Леонард Эйлер нашёл простое число 2 31 – 1. В результате вычислений значений этого многочлена при х от 1 до 40 получаются только простые числа. <Рисунок 10 >

Первый Петербургский период жизни

В 1726 году императрица Екатерина I приглашает по рекомендации братьев Бернулли молодого Леонарда Эйлера в Российскую Академию наук. По приезду в Российскую столицу Эйлер вошёл в группу математиков и физиков, занимающуюся вопросами прикладной математики. Перед учёными была так же поставлена задача создания руководств для первоначального обучения наукам.

В один из последних дней 1733 года 26-летний Леонард Эйлер женился на Екатерине Гзель. Свадьба, Новый год – два праздника сразу! Вся академия сердечно поздравляла молодожёнов. Оказывается, великий математик может не только вычислять и анализировать, он не чужд и мирской жизни. У них было 13 детей, но только пять пережили детский возраст.

Эйлер отличался феноменальной работоспособностью. Он просто не мог не заниматься математикой или её приложениями. В 1735 году Академия получила задание выполнить срочное и очень громоздкое астрономическое вычисление по расчёту траектории кометы. Группа академиков просила на эту работу три месяца, а Эйлер взялся выполнить работу за три дня – и справился самостоятельно. Однако перенапряжение не прошло бесследно: он заболел и потерял зрение на правый глаз. Учёный отнёсся с несчастью с величайшим спокойствием: «Теперь я меньше буду отвлекаться от занятий математикой», – философски заметил он. <Рисунок 11 >.

В 1736 году Эйлер ввёл в употребление хорошо известное нам обозначение . Он вычислил с точностью до 153 десятичных знаков. Впервые это обозначение встретилось у английского математика Джонсона в 1706 году.

Рассказывают, что однажды Леонард Эйлер во время бессонницы вычислил шестую степень первых 100 чисел, а результаты повторил через много дней. В другой раз Эйлер, испытывая полученный им ряд, вычислил в течение часа первые 20 знаков числа .

Круги Эйлера

В одной из работ Эйлера говорится о кругах, которые «очень подходят для того, чтобы облегчить наши размышления». Эти круги обычно называют «кругами Эйлера». Давайте вместе решим следующую задачу.

Задача: В классе учатся 40 человек. Из них по русскому языку имеют «тройки» 19 человек, по математике – 17 человек и по физике – 22 человека. Только по одному предмету имеют «тройки»: по русскому языку – 4 человека, по математике – 4 человека и по физике – 11 человек. Семь человек имеют «тройки» и по математике и по физике, из них пятеро имеют тройки и по русскому языку. Сколько человек учатся без «троек». Сколько человек имеют «тройки» по двум из трёх предметов. Рассмотрим решение с помощью следующего слайда <Рисунок 12 >.

Задание 3

Пересчитайте математиков. В классе 35 учеников. Из них 20 занимаются в математическом кружке, 11 – в биологическом, 10 ребят не посещают эти кружки. Сколько биологов увлекаются математикой? На выполнение этой задачи 5 минут. Максимальная оценка – 5 баллов.

На экране появляется условие задачи, а затем рассматривается её решение <Рисунок 13 >.

Мосты в Кенигсберге

Вот перевод латинского текста, который взят из письма Эйлера к итальянскому математику и инженеру Маринони, отправленного из Петербурга 13 марта 1736 года: "Некогда мне была предложена задача об острове, расположенном в городе Кенигсберге и окруженном рекой, через которую перекинуто семь мостов. Спрашивается, может ли кто-нибудь непрерывно обойти их, проходя только однажды через каждый мост. И тут же мне было сообщено, что никто еще до сих пор не мог это проделать, но никто и не доказал, что это невозможно. Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство... После долгих размышлений я нашел легкое правило, основанное на вполне убедительном доказательстве, с помощью которого можно во всех задачах такого рода тотчас же определить, может ли быть совершен такой обход через какое угодно число и как угодно расположенных мостов или не может".

Если число островов, соединённых мостами больше двух, то для решения задачи необходимо посчитать, сколько мостов ведут на каждый остров. Если на каждый остров ведёт чётное число мостов, то обход возможен и начать его можно с любого острова. Если на два острова ведёт нечётное число мостов, то обход возможен и его следует начать с любого острова на который ведёт нечётное число мостов. Если имеется более двух областей, в которое ведёт нечётное число мостов, то указанный переход не возможен.
В нашей задаче всего островов 4: A, B, C, D. Число мостов, ведущих к этим участкам соответственно: 5, 3, 3, 3, значит обход невозможен. <Рисунок 14 >.

Задание 4

Выясните, можно ли обойти все мосты, побывав на каждом из них только по одному разу в следующих случаях. <Рисунок 15 >, <Рисунок 16 >. На выполнение каждой задачи 1 минута. За каждую задачу – 2 балла.

Теория графов

Теория графов – наука сравнительно молодая. Первая работа по теории графов принадлежит Леонарду Эйлеру. Она появилась в 1736 году в публикациях Петербургской Академии Наук и начиналась с рассмотрения задачи о кенигсбергских мостах. Графы придали условиям наглядность, упростили решение и выявили сходство задач. Сейчас почти в любой отрасли науки и техники встречаешься с графами: в электротехнике при построении электрических схем, в химии – при изучении молекул и их цепочек, в экономике – при решении задач выбора оптимального пути для потоков грузового транспорта. Граф – это фигура, состоящая из точек и линий.

Решим следующую задачу:

В школьном драматическом кружке решили ставить гоголевского «Ревизора». И тут разгорелся жаркий спор. Всё началось с Ляпкина-Тяпкина.

– Ляпкиным-Тяпкиным буду я! Решительно заявил Дима. С раннего детства я мечтал воплотить этот образ на сцене.
– Ну хорошо, согласен уступить эту роль, если мне дадут сыграть Хлестакова, проявил великодушие Гена.
– … А мне – Осипа, – не уступил ему в великодушии Дима.
– Хочу быть Земляникой или Городничим, – сказал Вова.
– Нет, Городничим буду я, – хором закричали Алик и Боря. – или Хлестаковым, добавили они одновременно.

Удастся ли распределить роли так. Чтобы исполнители были довольны? <Рисунок 17 >.

Изобразим каждого участника драматического кружка точкой, а все их пожелания будем изображать линиями. Видно, что Осипа будет играть Дима, Вова – Землянику, Гена – Ляпкина – Тяпкина, Алик и Боря – Хлестакова и Городничего.

Задание 5

Решите с помощью графов следующую задачу: В первенстве класса по настольному теннису 6 участников: Андрей, Борис, Виктор, Галина, Дмитрий и Елена. Первенство проводят по круговой системе – каждый из участников играет с каждым из остальных один раз. На выполнение этой задачи 5 минут. Максимальная оценка – 5 баллов.

Решение задачи выводится на экран <Рисунок 18 >.

В 1736 году Эйлер выпустил два тома аналитической механики. В этой работе он применил методы математического анализа к решению проблем движения в пустоте и сопротивляющейся среде. Эта работа стала первой, где дифференциальное и интегральное исчисления применялись для описания физических явлений. <Рисунок 19 >.

В 1738 году появились два тома «Руководства к арифметике» на немецком языке, которое было переведено на русский язык и вышло в 1740 году в качестве учебника для гимназистов.

В 1739 году Эйлер выпускает книгу о теории музыки, в которой он рассматривает музыку как часть математики.

В 1740 году Эйлер издал книгу о приливах и отливах морей, за которую получил премию Парижской Академии наук.

Всего за 14лет первого петербургского периода жизни Эйлер подготовил к печати около 80 трудов и опубликовал свыше 50. Эйлер участвовал во многих направлениях деятельности Петербургской АН. Он читал лекции студентам, участвовал в различных технических экспертизах, работал над составлением карт России.

В 1741 году Эйлер принял предложение прусского короля Фридриха II переехать в Берлин.

Берлинский период

Живя в Берлине, Эйлер не переставал интенсивно работать для Петербургской АН, сохраняя звание её почётного члена. Он вёл обширную научную переписку, в частности переписывался яс Ломоносовым, которого высоко ценил. На получаемые из России деньги Эйлер закупал для Академии книги, приборы, подбирал кандидатов на академические должности, писал отзывы на научные работы.

Эйлер ввёл близкую к привычной нам символику, полностью разъяснил вопрос о знаках тригонометрических функций любого аргумента. Предшественники Эйлера, понимали тригонометрические функции как образы линий в круге некоторого радиуса, называя его «полным синусом». Теперь же тригонометрические функции составили просто некоторый класс аналитических функций, как действительного так и комплексного аргумента. В 1748 году, благодаря Эйлеру, вошло в употребление привычное нам обозначение синуса и косинуса, а в 1753 году котангенса.

Задание 6

Построить в одной системе координат графики данных функций <Рисунок 20 >. На выполнение этой задачи 10 минут. Максимальная оценка – 10 баллов.

Из рисунка видно, что при значениях х близких к единице графики этих функций почти совпадают <Рисунок 21 >. Эйлер получил представление тригонометрических функций синус и косинус в виде суммы функций, в виде многочлена. <Рисунок 22 >, <Рисунок 23 >.

В Берлинской АН Леонард Эйлер руководил обсерваторией и ботаническим садом, занимался изданием разнообразных географических и календарей. В этот период Эйлер опубликовал 380 научных работ, написал книги по математическому анализу, по кораблестроению и навигации, о движении Луны. <Рисунок 24 >.

Результаты, полученные Эйлером, используются в космических исследованиях. В частности, для управления летательными аппаратами необходимо отыскать наилучшее (оптимальное) управление. Л. Эйлер разработал в 1726–1744 гг. общий метод решения экстремальных задач.

Например, двигаясь по циклоиде, под действием силы тяжести тело опустится из одной точки в другую в кратчайшее время.

Эйлер открыл формулу по которой можно вычислить силу, называемую критической, под действием которой колонна начинает сгибаться и её ось принимает форму синусоиды.
Рост авторитета Эйлера нашёл своеобразное отражение в письмах к нему его учителя И. Бернулли. В 1728 году Бернулли обращается к «учёнийшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 – к «знаменитейшему и остроумнейшему математику», а в 1745 – к «несравненному Леонарду Эйлеру – главе математиков».

Задание 7

Выясните, выполнив необходимые построения на какой линии в произвольном треугольнике лежат следующие три точки: точка пересечения высот, точка пересечения медиан, центр описанной окружности. На выполнение этой задачи 5 минут. Максимальная оценка – 5 баллов.
В произвольном треугольнике точка пересечения высот, точка пересечения медиан и центр описанной окружности лежат на одной прямой. Эта прямая называется прямой Эйлера. <Рисунок 25 >.

Второй Петербургский период жизни

Эйлер вернулся в Россию в 1766 году. В Петербург он привёз много рукописей, которые не успел опубликовать в Берлине. Несмотря на преклонный возраст и постигшую его почти полную слепоту, он до конца своей жизни продуктивно работал.

В 1767 Эйлер написал учебник алгебры – «Универсальная арифметика». Эта книга Эйлера, вышла на русском языке в 1768 г, на немецком в 1770 г. Переведена на французский, английский, испанский. Переиздавалась 30 раз на 6 европейских языках. <Рисунок 26 >.

В 1776 Леонард Эйлер был одним из экспертов проекта одноарочного моста через Неву, предложенного И.Кулибиным, и из всей комиссии один оказал широкую поддержку проекту.

В 1777г. Эйлер ввел в употребление обозначение мнимой единицы i и записал свою знаменитую формулу, которую Лагранж назвал одним из самых прекрасных изобретений 18 века. Академик Крылов считает, что эта удивительная формула объединяет арифметику (–1), геометрию (П), алгебру (квадратный корень из минус единицы равен мнимой единице), анализ (е). <Рисунок 27 >.

Круг занятий Эйлера, охватывавших все отделы современной ему математики и механики,
теорию упругости, математическую физику, оптику, теорию музыки, теорию машин, баллистику, морскую науку, страховое дело и т.д.

Задание 8

Требуется выбрать 5 гирь так, чтобы с их помощью можно было взвесить любой груз до 30кг, при условии, что гири ставятся только на одну чашу весов. Эйлер предложил взять такие гири: 1 кг, 2 кг, 4 кг, 8 кг, 16 кг. Попробуйте «взвесить» этими гирями грузы от 1 до 30 килограмм. За каждый правильный ответ 1 балл. На выполнение этой задачи 5 минут.

За 1777 г. Эйлер, будучи слепым, подготовил около 100 статей, т.е. почти по 2 статьи в неделю! За 17 лет вторичного пребывания в Петербурге Леонардом Эйлером было подготовлено около 400 работ. <Рисунок 28 >.

Заслуги Эйлера как крупнейшего учёного и организатора научных исследований получили высокую оценку ещё при его жизни. Помимо Петербургской и Берлинской академий, он состоял членом крупнейших научных учреждений: Парижской АН, Лондонского королевского общества и других. <Рисунок 29 >. 3/5 работ Эйлера относится к математике, остальные 2/5 к её приложениям.

Доминик Араго сказал: «Эйлер вычислял без всякого видимого усилия, как человек дышит или как орёл парит над землёй».

Задание 9

Выяснить на какой линии в произвольном треугольнике лежат: основания высот, основания медиан, середины отрезков, соединяющих точку пересечения высот треугольника с его вершинами. На выполнение этой задачи 10 минут. Максимальная оценка – 10 баллов.

В произвольном треугольнике основания медиан, основания высот, а также середины отрезков, соединяющих точку пересечения высот треугольника с его вершинами, лежат на одной окружности. Её называют окружностью Эйлера. <Рисунок 30 >.

Умер Леонард Эйлер 18 сентября 1783 года. Французский математик Кондорсе сказал: «Эйлер перестал вычислять и жить». Его похоронили на Смоленском кладбище в Петербурге. Надпись на памятнике гласила: «Леонарду Эйлеру – Петербургская академия». Академик Вавилов скажет позже: «Вместе с Петром I и Ломоносовым Эйлер стал добрым гением нашей академии, определившим её славу, её крепость, её продуктивность». <Рисунок 31 >. Через 50 лет обнаружилось, что могила утеряна, и лишь случайно её удалось найти. Позднее останки Эйлера были перенесены в некрополь Александро-Невской лавры, где сегодня можно увидеть его могилу.

18 столетие с полным правом может быть названо веком Эйлера. Он оказал большое и плодотворное влияние на развитие математического просвещения в России. Именем Эйлера назван кратер на обратной стороне Луны. М. В. Остроградский писал, что «Эйлер создал современный анализ и сделал из него самый могущественный аппарат ума человеческого. Он один охватил анализ во всём его объёме и указал на многочисленные и разнообразные его применения».

В 1909 г. Швейцарское естественнонаучное общество приступило к изданию полного собрания сочинений Эйлера, которое завершено в 1975 г.Оно состоит из 72 томов. Знаменитый французский учёный П. Лаплас говорил: «Читайте, читайте Эйлера, он наш общий учитель». По книгам Эйлера училось несколько поколений, а главное содержание этих книг вошло в современные учебники.

В сентябре 1983 года во всём мире отмечалось 200-летие со дня смерти великого петербургского математика Леонардо Эйлера. Специально созданный Эйлеровский комитет при Академии наук ГДР провёл научную конференцию с участием зарубежных математиков. К открытию конференции была выпущена памятная медаль из мейсенского фарфора. <Рисунок 32 >. Вышла в свет марка с портретом Эйлера и одной из наиболее знаменитых его формул, а также конверты с факсимиле его подписи и тиснёным портретом. <Рисунок 33 >.

В 2007 году широко отмечалось 300-летие великого математика Леонарда Эйлера.

Подведение итогов игры

Жюри подсчитывает баллы и подводит итоги

Литература:

«Математика». Учебно-методическая газета. Специальный выпуск к 300-летию Леонарда Эйлера. №6, 2007.
Альхова З.Н., Макеева А.В. Внеклассная работа по математике. – Саратов, ОАО Лицей, 2002.
Баврин И.И., Фрибус Е.А. Старинные математические задачи. – М.: Просвещение, 1994.
Баврин И.И., Фрибус Е.А. Занимательные задачи по математике. – М.: Владос, 2003.
Никифоровский В А. В мире уравнений. – М. : Наука, 1987.
Смышляев В.К. О математике и математиках. – Йошкар-Ола, марийское книжное издательство, 1977.

Величайший математик в мире: Леонард Эйлер

Реферат по курсу « Математика»

Выполнил студент гр. 2г21 22.12.12

Проверил

Томск – 2012

Введение

Леонард Эйлер () - математик, механик, физик и астроном. По происхождению швейцарец.

В 1726 году Леонард Эйлер был приглашен в Петербургскую АН и переехал в 1727 в Россию. Был адъюнктом (1726), а в 1731-41 и с 1766 академиком Петербургской АН (в 1742-66 иностранный почетный член). В 1741-66 работал в Берлине, член Берлинской АН.

Л. Эйлер - ученый необычайной широты интересов и творческой продуктивности. Автор свыше 800 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближенным вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и других, оказавших значительное влияние на развитие науки. За время существования Академии наук в России, считается одним из самых знаменитых ее членов.

Леонард Эйлер стал первым, кто в своих работах начал возводить последовательное здание анализа бесконечно малых Только после его исследований, изложенных в грандиозных томах его трилогии «Введение в анализ», «Дифференциальное исчисление» и «Интегральное исчисление», анализ стал вполне оформившейся наукой - одним из самых глубоких научных достижений человечества.

Биография

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т. е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.

В следующей работе 1771 года «О телах, поверхность которых может быть развернута в плоскость» Леонард Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить лишь изгибая плоскость, но не растягивая ее и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.

Столь же замечательны работы Эйлера по картографическим проекциям.

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развертывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного, должны были казаться прямо-таки трансцендентными. А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

Неутомимость и настойчивость в научных исследованиях Леонарда Эйлера были таковы, что в 1773 году, когда сгорел его дом и погибло почти все имущество его семейства, он и после этого несчастья продолжал диктовать свои исследования. Вскоре после пожара искусный окулист, барон Вентцель, произвел операцию снятия катаракты, но Эйлер не выдержал надлежащего времени без чтения и ослеп окончательно.

В том же 1773 году умерла жена Эйлера, с которой он прожил сорок лет. Через три года он вступил в брак с ее сестрой, Саломеей Гзелль. Завидное здоровье и счастливый характер помогали Леонарду Эйлеру «противостоять ударам судьбы, которые выпали на его долю. Всегда ровное настроение, мягкая и естественная бодрость, какая-то добродушная насмешливость, умение наивно и забавно рассказывать делали разговор с ним столь же приятным, сколь и желанным...» Он мог иногда вспылить, но «был не способен долго питать против кого-либо злобу...» - вспоминал.

Эйлера постоянно окружали многочисленные внуки, часто на руках у него сидел ребенок, а на шее лежала кошка. Он сам занимался с детьми математикой. И все это не мешало ему работать.

Леонард Эйлер скончался 18 сентября 1783 года от апоплексического удара в присутствии своих помощников профессоров Крафта и Лекселя. Он был похоронен на Смоленском лютеранском кладбище. (Лютеранство - крупнейшее направление протестантизма. Основано Мартином Лютером в 16 веке). Академия заказала известному скульптору, хорошо знавшему Эйлера, мраморный бюст покойного, а княгиня Дашкова подарила мраморный пьедестал.

До конца XVIII века конференц-секретарем Академии оставался, которого сменил, женившийся на дочери последнего, а в 1826 году - сын, так что организационной стороной жизни Академии около ста лет ведали потомки Леонарда Эйлера. Эйлеровские традиции оказали сильное влияние и на учеников Чебышева: A. M. Ляпунова, и других, определив основные черты петербургской математической школы.

Заключение

Нет ученого, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

Леонард Эйлер нашел доказательства всех теорем Ферма, показал неверность одной из них, а знаменитую Великую теорему Ферма доказал для «трех» и «четырех». Он также доказал, что всякое простое число вида 4п+1 всегда разлагается на сумму квадратов других двух чисел.

Л. Эйлер начал последовательно строить элементарную теорию чисел. Начав с теории степенных вычетов, он затем занялся квадратичными вычетами. Это так называемый квадратичный закон взаимности . Эйлер также много лет занимался решением неопределенных уравнений второй степени с двумя неизвестными.

Во всех этих трех фундаментальных вопросах, которые больше двух столетий после Эйлера и составляли основной объем элементарной теории чисел, ученый ушел очень далеко, однако во всех трех его постигла неудача. Полное доказательство получили Гаусс и Лагранж.

Эйлеру принадлежит инициатива создания и второй части теории чисел - аналитической теории чисел, в которой глубочайшие тайны целых чисел, например распределение простых чисел в ряду всех натуральных чисел, получаются из рассмотрения свойств некоторых аналитических функций.

Созданная Леонардом Эйлером аналитическая теория чисел продолжает развиваться и в наши дни.

Эйлер вычислял без всякого видимого усилия, как человек дышит или как орёл парит над землёй.

Доминик Араго

Математические формулы у Эйлера жили своей собственной жизнью и рассказывали ему важные и существенные данные о природе вещей. Ему было достаточно только коснуться их, как они из немых букв преображались в красноречивые фразы, дающие глубокий и значительный ответ на различные вопросы.

Современник Эйлера

Вместе с Петром I и Ломоносовым, Эйлер стал добрым гением нашей Академии, определившим её славу, её крепость, её продуктивность.

С.И. Вавилов

Леонард Эйлер (15 апреля 1707 - 18 сентября 1783) - швейцарский, немецкий и российский учёный, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Он стал первым, кто в своих работах начал возводить последовательное здание анализа бесконечно малых. Только после его исследований, изложенных в грандиозных томах его трилогии «Введение в анализ», «Дифференциальное исчисление» и «Интегральное исчисление», анализ стал вполне оформившейся наукой - одним из самых глубоких научных достижений человечества. Почти полжизни провёл в России, где внёс существенный вклад в становление российской науки. Эйлер хорошо знал русский язык и часть своих сочинений (особенно учебники) публиковал на русском. Первые русские академики-математики (С.К. Котельников) и астрономы (С.Я. Румовский) были учениками Эйлера. Некоторые из потомков Эйлера до сих пор живут в России.

Леонард Эйлер родился в швейцарском городе Базеле. Отец его, Павел Эйлер, был пастором в Рихене (близ Базеля) и имел некоторые познания в математике. Отец предназначал своего сына к духовной карьере, но сам, интересуясь математикой, преподавал её и сыну, надеясь, что она ему впоследствии пригодится в качестве интересного и полезного занятия. По окончании домашнего обучения тринадцатилетний Леонард был отправлен отцом в Базель для слушания философии.

Среди других предметов на этом факультете изучались элементарная математика и астрономия, которые преподавал Иоганн Бернулли. Вскоре Бернулли заметил талантливость юного слушателя и начал заниматься с ним отдельно.

Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его всё больше влекло к математике. Эйлер стал бывать в доме своего учителя, и между ним и сыновьями Иоганна Бернулли - Николаем и Даниилом - возникла дружба, сыгравшая очень большую роль в жизни Эйлера.

В 1725 году братья Бернулли были приглашены в члены Петербургской академии наук, недавно основанной императрицей Екатериной I. Уезжая, Бернулли обещали Леонарду известить его, если найдётся и для него подходящее занятие в России. На следующий год они сообщили, что для Эйлера есть место, но, однако, в качестве физиолога при медицинском отделении академии. Узнав об этом, Леонард немедленно записался в студенты медицины Базельского университета. Прилежно и успешно изучая науки медицинского факультета, Эйлер находит время и для математических занятий. За это время он написал напечатанную потом, в 1727 году, в Базеле диссертацию о распространении звука и исследование по вопросу о размещении мачт на корабле.

В столице Российской Империи молодого спеца, меньше чем за год научившегося довольно бегло говорить по-русски, тут же загрузили работой, причем, не всегда связанной с математикой. Дефицит специалистов привел к тому, что ученого то заряжали заданиями по картографии, то требовали письменных консультаций для кораблестроителей и артиллеристов, то поручали конструирование пожарных насосов, а то и вовсе вменяли в обязанность составление придворных гороскопов. Все эти задания Эйлер аккуратно исполнял, и только требования по вопросам астрологии категорически переадресовывал к придворным астрономам. Предсказания в России всегда были делом повышенной опасности и требовали особой осторожности.

В Петербурге имелись самые благоприятные условия для расцвета гения Эйлера: материальная обеспеченность, возможность заниматься любимым делом, наличие ежегодного журнала для публикации трудов. Здесь же работала самая большая тогда в мире группа специалистов в области математических наук, в которую входили Даниил Бернулли (его брат Николай скончался в 1726 году), разносторонний Х. Гольдбах, с которым Эйлера связывали общие интересы к теории чисел и другим вопросам, автор работ по тригонометрии Ф.Х. Майера, астроном и географ Ж.Н. Делиль, математик и физик Г.В. Крафт и другие. С этого времени Петербургская академия стала одним из главных центров математики в мире.

Открытия Эйлера, которые благодаря его оживлённой переписке нередко становились известными задолго до издания, делают его имя всё более широко известным. Улучшается его положение в Академии наук: в 1727 году он начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т.е. действительным членом академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д. Бернулли, возвратившийся в том же году в Базель. Рост авторитета Эйлера нашёл своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «учёнейшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 году - к «знаменитейшему и остроумнейшему математику», а в 1745 году - к «несравненному Леонарду Эйлеру - главе математиков».

В 1735 году академии потребовалось выполнить весьма сложную работу по расчёту траектории кометы. По мнению академиков, на это нужно было употребить несколько месяцев труда. Эйлер взялся выполнить это в три дня и исполнил работу, но вследствие этого заболел нервною горячкою с воспалением правого глаза, которого он и лишился. Вскоре после этого, в 1736 году, появились два тома его аналитической механики. Потребность в этой книге была большая; немало было написано статей по разным вопросам механики, но хорошего трактата по механике не имелось.

В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году - новая теория музыки. Затем в 1840 году Эйлер написал сочинение о приливах и отливах морей, увенчанное одной третью премии Французской академии; две других трети были присуждены Даниилу Бернулли и Маклорену за сочинения на ту же тему.

В конце 1740 года после смерти императрицы Анны Иоанновны царем стал малолетний Иоанн IV. Правившая в это время империей регент Иоанна Анна Леопольдовна наукам никакого внимания не уделяла, и Академия постепенно приходила в запустение. «Предвиделось нечто опасное, - писал потом Эйлер в автобиографии. - После кончины достославной императрицы Анны при последовавшем тогда регентстве… положение начало представляться неуверенным». Поэтому ученый воспринял приглашение Фридриха как подарок судьбы и тут же подал прошение, в котором писал: «Того ради нахожусь принужден, как ради слабого здоровья, так и других обстоятельств, искать приятнейшего климата и принять от его Королевского Величества Прусского учиненное мне призывание. Того ради прошу Императорскую Академию наук всеподданнейше меня милостиво уволить и снабдить для моего и домашних моих проезду потребным пашпортом».

Несмотря на общее прохладное отношение к науке, государственная администрация вовсе не горела желанием вот так запросто отпускать уже признанное мировое светило. С другой стороны, и не отпустить было нельзя. Поэтому, в результате недолгих переговоров, от математика удалось получить обещание, даже проживая в Берлине всячески помогать России. Взамен ему присвоили звание почетного члена Академии с окладом 200 рублей. Наконец, 29 мая 1741 года все документы были выправлены, и уже в июне Эйлер, вместе со всем своим семейством, женой, детьми и четырьмя племянниками прибыл в Берлин.

Говорят, что когда на балу, устроенном в честь приезда в Берлин знаменитого математика Леонарда Эйлера, королева-мать спросила ученого, почему он так немногословен, тот ответил: «Прошу меня простить, но я только что из страны, где за лишнее слово могут повесить». Однако через 25 лет он опять вернулся в эту «ужасную страну». Так велико для него было притяжение России.

В Берлине Эйлер поначалу собрал около себя небольшое учёное общество, а затем был приглашён в состав вновь восстановленной Королевской академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нём указывается на способ интегрирования рациональных дробей путём разложения их на частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.

Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая за ними в большой мере сохраняется и до сих пор. Эйлер, кроме того, начал целую новую главу анализа - вариационное исчисление. Это его начинание вскоре подхватил Лагранж и, таким образом, сложилась новая наука.

В 1744 году Эйлер напечатал в Берлине три сочинения о движении светил: первое - теория движения планет и комет, заключающая в себе изложение способа определения орбит из нескольких наблюдений; второе и третье - о движении комет.

Семьдесят пять работ Эйлер посвятил геометрии. Часть из них хотя и любопытна, но не очень важна. Некоторые же просто составили эпоху. Во-первых, Эйлера надо считать одним из зачинателей исследований по геометрии в пространстве вообще. Он первый дал связное изложение аналитической геометрии в пространстве (во «Введении в анализ») и, в частности, ввёл так называемые углы Эйлера, позволяющие изучать повороты тела вокруг точки.

В работе 1752 года «Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями», Эйлер нашёл соотношение между числом вершин, рёбер и граней многогранника: сумма числа вершин и граней равна числу рёбер плюс два . Такое соотношение предполагал ещё Декарт, но Эйлер доказал его в своих мемуарах. Это в некотором смысле первая в истории математики крупная теорема топологии - самой глубокой части геометрии.

Занимаясь вопросами о преломлении лучей света и написав немало мемуаров об этом предмете, Эйлер издал в 1762 году сочинение, в котором предлагается устройство сложных объективов с целью уменьшения хроматической аберрации. Английский художник Долдонд, открывший два различной преломляемости сорта стекла, следуя указаниям Эйлера, построил первые ахроматические объективы.

В 1765 году Эйлер написал сочинение, где решает дифференциальные уравнения вращения твёрдого тела, которые носят название Эйлеровых уравнений вращения твёрдого тела.

Много написал учёный сочинений об изгибе и колебании упругих стержней. Вопросы эти интересны не только в математическом, но и в практическом отношении.

Фридрих Великий давал учёному поручения чисто инженерного характера. Так, в 1749 году он поручил ему осмотреть канал Фуно между Гавелом и Одером и дать рекомендации по исправлению недостатков этого водного пути. Далее ему поручено было исправить водоснабжение в Сан-Суси.

Результатом этого стало более двадцати мемуаров по гидравлике, написанных Эйлером в разное время. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности к давлению называются гидродинамическими уравнениями Эйлера.

Покинув Петербург, Эйлер сохранил самую тесную связь с русской Академией наук, в том числе официальную: он был её почётным членом, получал крупную ежегодную пенсию, и со своей стороны, выполнял взятые на себя обязательства в отношении дальнейшего сотрудничества. Слово, данное перед тем, как покинуть Россию, ученый держал строго. Он закупал для нашей академии книги, физические и астрономические приборы, подбирал в других странах сотрудников, сообщая подробнейшие характеристики возможных кандидатов, редактировал математический отдел академических записок, выступал как арбитр в научных спорах между петербургскими учёными, присылал темы для научных конкурсов, а также информацию о новых научных открытиях.

В доме Эйлера на полном пансионе жили отправленные на стажировку молодые русские ученые. Именно здесь он познакомился и подружился с перспективным студентом московских «Спасских школ» Михаилом Ломоносовым, в котором больше всего отмечал «счастливое сочетание теории с экспериментом». Когда в 1747 году президент Академии наук граф Разумовский попросил его дать отзыв о статьях молодого ученого, Эйлер оценил их очень высоко:

Все сии диссертации, не токмо хороши, но и весьма превосходны, ибо он (Ломоносов) пишет о материях физических и химических весьма нужных, которые по ныне не знали и истолковать не могли самые остроумные люди, что он учинил с таким успехом, что я совершенно уверен в справедливости его изъяснений. При сём случае г. Ломоносову должен отдать справедливость, что имеет превосходное дарование для изъяснения физических и химических явлений. Желать должно, чтоб и другия Академии в состоянии были произвести такия откровения, как показал г. Ломоносов.

Надо сказать, что весьма заносчивый, самолюбивый и сложный в общении Михаил Васильевич также до конца дней любил своего берлинского учителя, писал ему дружеские письма и считал одним из величайших ученых мира.

В переписке Эйлера с его другом академиком Петербургской академии наук Гольдбахом мы находим две знаменитые «задачи Гольдбаха»: доказать, что всякое нечётное натуральное число есть сумма трёх простых чисел, а всякое чётное - двух. Первое из этих утверждений было при помощи, весьма замечательного, метода доказано уже в наше время (1937) академиком И.М. Виноградовым, а второе не доказано до сих пор.

Европейская слава и признание заслуг Эйлера всё расли. Но это никак не влияло на холодное отношение к нему властьпредержащих царственных особ Пруссии. Когда в 1759 году умер президент Берлинской Академии наук Мопертюи, Фридрих II долго не мог найти ему замену. Французский ученый-энциклопедист Жан Д`Аламбер, к которому король обратился в первую очередь, отказался от заманчивого предложения, посчитав, что в Берлине есть более достойная кандидатура на этот пост. Наконец Фридрих смирился и таки отдал Эйлеру руководство Академией. Но титул президента присвоить ему отказался категорически.

В России же об Эйлере помнили и очень ценили сотрудничество с ним. Так во время семилетней войны русская артиллерия случайно разрушила дом ученого в Шарлоттенбурге (пригород Берлина). Узнавший об этом фельдмаршал Салтыков тут же возместил ученому все нанесенные потери. А когда весть о неудачном артобстреле достигла императрицы Елизаветы, она распорядилась от себя лично прислать берлинскому другу еще 4000 рублей, что было огромной суммой.

В 1762 году на русский престол заступила Екатерина II, мечтавшая установить в стране «просвещенную монархию». Возвращение в страну видного математика она видела одной из важнейших своих задач. Поэтому вскоре Эйлер получил от нее весьма интересное предложение: возглавить математический класс, получив при этом звание конференц-секретаря Академии и оклад 1800 рублей в год. «А если не понравится, - говорилось в ее поручении дипломатическим представителям, - благоволит сообщить свои условия, лишь бы не медлил приездом в Петербург.»

Эйлер, и правда, благоволил выдвинуть встречные условия:

Пост вице-президента Академии с окладом 3000 рублей;

Ежегодную пенсию 1000 рублей супруге в случае его смерти;

Оплачиваемые должности для троих его сыновей, в том числе пост секретаря Академии для старшего.

Такая дерзость со стороны какого-то математика возмутила представителя императорской администрации, видного российского дипломата графа Воронцова. Однако сама императрица думала по-другому. «Письмо к Вам г. Эйлера, - писала она графу, - доставило мне большое удовольствие, потому что я узнаю из него о желании его снова вступить в мою службу. Конечно, я нахожу его совершенно достойным желаемого звания вице-президента Академии наук, но для этого следует принять некоторые меры, прежде чем я установлю это звание - говорю установлю, так как доныне его не существовало. При настоящем положении дел там нет денег на жалование в 3000 рублей, но для человека с такими достоинствами, как г. Эйлер, я добавлю к академическому жалованию из государственных доходов, что вместе составит требуемые 3000 рублей… Я уверена, что моя Академия возродится из пепла от такого важного приобретения, и заранее поздравляю себя с тем, что возвратила России великого человека».

Получив заверения в том, что все его условия приняты на самом высоком уровне, Эйлер немедленно написал Фридриху заявление с просьбой об отставке. Возможно, из-за нежелания отпускать видного ученого, возможно - из-за негативного к нему отношения, а скорее всего - от всего этого вместе, король не просто отказал, а именно проигнорировал обращение Эйлера, не дав на него никакого ответа. Эйлер написал еще одно прошение. С тем же результатом. Тогда математик просто демонстративно прекратил работу в Академии. Наконец, с просьбой отпустить ученого к королю Пруссии обратилась сама Екатерина. Только после такого высокого вмешательства Фридрих разрешил математику покинуть Пруссию.

В июле 1766 года ученый вместе с 17 домочадцами прибыл в Санкт-Петербург. Сразу же по прибытии он был принят императрицей. Екатерина, теперь уже Вторая, встретила его как августейшую особу и осыпала милостями: пожаловала 8000 рублей на покупку дома на Васильевском острове и на приобретение обстановки, предоставила на первое время одного из своих поваров и поручила подготовить соображения о реорганизации Академии.

Старший из его сыновей Иоганн Альбрехт стал академиком в области физики, Карл занял высокую должность в медицинском ведомстве, Христофора, родившегося в Берлине, Фридрих II долго не отпускал с военной службы, и потребовалось очередное вмешательство Екатерины II, чтобы тот смог приехать к отцу. Христофор был назначен директором Сестрорецкого оружейного завода.

К несчастью, после возвращения в Петербург у Эйлера образовалась катаракта левого глаза - он почти перестал видеть.

Эйлер, при своих гениальных способностях и замечательной памяти, продолжал работать, диктовать свои новые мемуары. Только с 1769 по 1783 год Эйлер продиктовал около 380 статей и сочинений, а за свою жизнь написал около 900 научных работ.

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т.е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.

В следующей работе 1771 года «О телах, поверхность которых может быть развёрнута в плоскость» Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить лишь изгибая плоскость, но не растягивая её и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.

Столь же замечательны работы Эйлера по картографическим проекциям.

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развёртывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного, должны были казаться прямо-таки трансцендентными. А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

В 1771 году в жизни Эйлера произошли два серьёзных события. В мае в Петербурге случился большой пожар, уничтоживший сотни зданий, в том числе дом и почти всё имущество Эйлера. Самого учёного с трудом спасли. Все рукописи удалось уберечь от огня; сгорела лишь часть «Новой теории движения луны», но она быстро была восстановлена с помощью самого Эйлера, сохранившего до глубокой старости феноменальную память. Эйлеру пришлось временно переселиться в другой дом.

В сентябре того же года, по особому приглашению императрицы, в Санкт-Петербург прибыл для лечения Эйлера известный немецкий окулист барон Вентцель. После осмотра он согласился сделать Эйлеру операцию и удалил с левого глаза катаракту. Эйлер снова стал видеть. Врач предписал беречь глаз от яркого света, не писать, не читать - лишь постепенно привыкать к новому состоянию. Однако уже через несколько дней после операции Эйлер снял повязку, и вскоре потерял зрение снова. На этот раз - окончательно.

В 1773 году по рекомендации Даниила Бернулли в Петербург приехал из Базеля ученик Бернулли, Никлаус Фусс. Это было большой удачей для Эйлера. Фусс обладал редким сочетанием математического таланта и умения вести практические дела, что и дало ему возможность сразу же после приезда взять на себя заботы о математических трудах Эйлера. Вскоре Фусс женился на внучке Эйлера. В последующие десять лет - до самой своей смерти - Эйлер преимущественно ему диктовал свои труды, хотя иногда пользовался «глазами старшего сына» и других своих учеников.

В 1773 году умерла жена Эйлера, с которой он прожил сорок лет. Через три года он вступил в брак с её сестрой, Саломеей Гзелль. Завидное здоровье и счастливый характер помогали Эйлеру «противостоять ударам судьбы, которые выпали на его долю… Всегда ровное настроение, мягкая и естественная бодрость, какая-то добродушная насмешливость, умение наивно и забавно рассказывать делали разговор с ним столь же приятным, сколь и желанным…» Он мог иногда вспылить, но «был не способен долго питать против кого-либо злобу…» — вспоминал Фусс.

Эйлера постоянно окружали многочисленные внуки, часто на руках у него сидел ребёнок, а на шее лежала кошка. Он сам занимался с детьми математикой. И всё это не мешало ему работать!

Эйлер оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. С точки зрения математики, XVIII век - это век Эйлера. Если до него достижения в области математики были разрозненны и не всегда согласованны, то Эйлер впервые увязал анализ, алгебру, тригонометрию, теорию чисел и другие дисциплины в единую систему, и добавил немало собственных открытий. Значительная часть математики преподаётся с тех пор «по Эйлеру».

Благодаря Эйлеру в математику вошли общая теория рядов, удивительная по красоте формула Эйлера:

и как следствие, тождество Эйлера связывающее пять фундаментальных математических констант:

операция сравнения по целому модулю, полная теория непрерывных дробей, аналитический фундамент механики, многочисленные приёмы интегрирования и решения дифференциальных уравнений, число e , обозначение i для мнимой единицы, гамма-функция с её окружением и многое другое.

По существу, именно он создал несколько новых математических дисциплин - теорию чисел, вариационное исчисление, теорию комплексных функций, дифференциальную геометрию поверхностей, специальные функции. Другие области его трудов: диофантов анализ, астрономия, оптика, акустика, статистика и т.д. Познания Эйлера были энциклопедичны; кроме математики, он глубоко изучал ботанику, медицину, химию, теорию музыки, множество европейских и древних языков.

Биографы отмечают, что Эйлер был виртуозным алгоритмистом. Он неизменно старался довести свои открытия до уровня конкретных вычислительных методов.

П.Л. Чебышёв писал: «Эйлером было положено начало всех изысканий, составляющих общую теорию чисел». Большинство математиков XVIII века занимались развитием анализа, но Эйлер пронёс увлечение древней арифметикой через всю свою жизнь. Благодаря его трудам интерес к теории чисел к концу века возродился.

Эйлер нашёл доказательства всех теорем Ферма, показал неверность одной из них, а знаменитую Великую теорему Ферма доказал для «трёх» и «четырёх». Эйлер строго доказал эти гипотезы, значительно обобщил их и объединил в содержательную теорию чисел. Он опроверг гипотезу Ферма о том, что все числа вида - простые; оказалось, что делится на 641.

Он также доказал, что всякое простое число вида 4n +1 всегда разлагается на сумму квадратов других двух чисел.

Дал одно из решений задачи о четырёх кубах.

Эйлер показал, что в теории чисел возможно применение методов математического анализа, положив начало аналитической теории чисел.

Ввел дзета-функцию, обобщение которой получило впоследствии имя Римана:

где s вещественно. Эйлер вывел для неё разложение:

где произведение берётся по всем простым числам p . Благодаря этому он доказал, что сумма ряда обратных простых расходится.

Одна из главных заслуг Эйлера перед наукой - монография «Введение в анализ бесконечно малых» (1748). В 1755 году выходит дополненное «Дифференциальное исчисление», а в 1768 - 1770 годах - три тома «Интегрального исчисления». В совокупности это фундаментальный, хорошо иллюстрированный примерами курс, с продуманной терминологией и символикой, откуда многое перешло и в современные учебники. Собственно современные методы дифференцирования и интегрирования были опубликованы в данных трудах.

Основание натуральных логарифмов было известно ещё со времён Непера и Якоба Бернулли, однако Эйлер выполнил настолько глубокое исследование этой важнейшей константы, что с тех пор она носит его имя. Другая исследованная им константа: постоянная Эйлера - Маскерони.

Эйлер делит с Лагранжем честь открытия вариационного исчисления. В 1744 году Эйлер опубликовал первую книгу по вариационному исчислению «Метод нахождения кривых, обладающих свойствами максимума либо минимума».

Эйлер значительно продвинул теорию рядов и распространил её на комплексную область, получив при этом знаменитую формулу Эйлера. Большое впечатление на математический мир произвели ряды, впервые просуммированные Эйлером, в том числе, не поддававшийся до него никому ряд обратных квадратов:

Эйлер был первым, кто широко использовал степенные ряды для выражения функций, например:

Современное определение показательной, логарифмической и тригонометрических функций - тоже его заслуга, так же как и их символика и обобщение на комплексный случай. Формулы, часто именуемые в учебниках «условия Коши - Римана», более правильно было бы назвать «условиями Даламбера - Эйлера».

Он первый дал систематическую теорию интегрирования и используемых там технических приёмов, нашёл важные классы интегрируемых дифференциальных уравнений. Он открыл эйлеровы интегралы - ценные классы специальных функций, возникающие при интегрировании: бета-функция и гамма-функция Эйлера. Одновременно с Клеро вывел условия интегрируемости линейных дифференциальных форм от двух или трёх переменных (1739). Первый ввёл двойные интегралы. Получил серьёзные результаты в теории эллиптических функций, в том числе первые теоремы сложения.

С более поздней точки зрения, действия Эйлера с бесконечными рядами не всегда могут считаться корректными (обоснование анализа было проведено лишь полвека спустя), но феноменальная математическая интуиция практически всегда подсказывала ему правильный результат. Впрочем, дело было не только в интуиции, Эйлер действовал здесь достаточно сознательно, во многих важных отношениях его понимание смысла расходящихся рядов и операций с ними превзошло стандартное понимание XIX века и послужило основой современной теории расходящихся рядов, развитой в конце XIX - начале XX века.

Эйлер много внимания уделял представлению натуральных чисел в виде сумм специального вида и сформулировал ряд теорем для вычисления числа разбиений.

Он исследовал алгоритмы построения магических квадратов методом обхода шахматным конём.

При решении комбинаторных задач он глубоко изучил свойства сочетаний и перестановок, ввёл в рассмотрение числа Эйлера.

Множество работ Эйлера посвящены математической физике: механике, гидродинамике, акустике и др. В 1736 году вышел трактат «Механика, или наука о движении, в аналитическом изложении», знаменующий новый этап в развитии этой древней науки. 29-летний Эйлер отказался от традиционного геометрического подхода к механике и подвёл под неё строгий аналитический фундамент. По существу, с этого момента механика становится прикладной математической дисциплиной.

В 1755 году публикуются «Общие принципы движения жидкостей», в которых положено начало теоретической гидродинамике. Выведены основные уравнения гидродинамики (уравнение Эйлера) для жидкости без вязкости. Разобраны решения системы для разных частных случаев.

Эйлер обобщил принцип наименьшего действия, довольно путано изложенный Мопертюи, и указал на его основополагающее значение в механике. К сожалению, он не раскрыл вариационный характер этого принципа, но всё же привлёк к нему внимание физиков, которые позднее выяснили его фундаментальную роль в природе.

Эйлер много работал в области небесной механики. Он заложил основу теории возмущений, позднее завершённой Лапласом, и разработал очень точную теорию движения Луны. Эта теория оказалась пригодной для решения насущной задачи определения долготы на море, и английское Адмиралтейство выплатило за неё Эйлеру специальную премию.

В 1757 году Эйлер впервые в истории нашёл формулы для определения критической нагрузки при сжатии упругого стержня. Однако в те годы эти формулы не могли найти практического применения.

Несомненно, Эйлер принадлежит к числу гениальнейших математиков всех времен. В истории точных наук его имя ставят рядом с именами Ньютона, Декарта, Галилея. Он был не только математиком, но и физиком, и астрономом. Его труды оказали огромное влияние на развитие этих наук. Нет учёного, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Великий французский математик Лаплас сказал о работах Эйлера:

Читайте, читайте Эйлера - он наш великий учитель.

Почти сто лет спустя, когда во многих странах - и прежде всего в Англии - стали строить железные дороги, потребовалось рассчитать прочность железнодорожных мостов. Модель Эйлера принесла практическую пользу в проведении экспериментов.

В начале 1780-х годов Эйлер все чаще стал жаловаться на головные боли и общую слабость. 18 сентября 1883 года он вел послеобеденную беседу с академиком Андреем Лекселем. Оба математики и астрономы, они обсуждали недавно открытую планету Уран и ее орбиту. Внезапно Эйлер почувствовал себя плохо. Он только успел сказать: «Я умираю», - после чего сразу потерял сознание. Через несколько часов, незадолго до полуночи, его не стало. Врачи установили, что смерть произошла от кровоизлияния в мозг.

Он был похоронен рядом с первой женой на Смоленском лютеранском кладбище на Васильевском острове. Академия заказала известному скульптору Ж.Д. Рашетту, хорошо знавшему Эйлера, мраморный бюст покойного, а княгиня Дашкова подарила мраморный пьедестал. На надгробном камне высекли слова: «Здесь покоятся бренные останки мудрого, справедливого, знаменитого Леонарда Эйлера».

В 1955 году прах великого математика был перенесён в «Некрополь XVIII века» на Лазаревском кладбище Александро-Невской лавры. Плохо сохранившийся надгробный памятник при этом заменили.

Дети математика так и остались в России. Старший сын, тоже талантливый математик и механик Иоганн Эйлер (1734-1800), как и обещала императрица Екатерина, был секретарем Императорской академии наук, которого сменил Фусс, а в 1826 году - сын Фусса, Павел Николаевич, так что организационной стороной жизни академии около ста лет ведали потомки Леонарда Эйлера. Младший, Христофор (1743-1808), дослужился до генерал-лейтенанта и командовал Сестрорецким оружейным заводом. Внук, Александр Христофорович (1773-1849) стал генералом от артиллерии, героем Отечественной войны 1812 года. Еще один потомок, правда вернувшийся на родину предков, в Швецию, Ханс Карл Август Симон фон Эйлер-Хельпин (1873-1964) стал известным биохимиком, иностранным членом Академии Наук СССР, лауреатом Нобелевской премии по химии за 1929 год. Другую Нобелевскую премию, только уже в 1970 году, получил его сын, шведский биолог Ульф фон Ойлер (1905-1983).

Эйлеровские традиции оказали сильное влияние на П.Л. Чебышева и его учеников: А.М. Ляпунова, А.Н. Коркина, Е.И. Золотарёва, А.А. Маркова и других, определив основные черты петербургской математической школы.

В честь Эйлера названы:

  • улица в Алма-Ате
  • кратер на Луне
  • астероид
  • Международный математический институт им. Леонарда Эйлера Российской Академии наук, основанный в 1988 году в Петербурге
  • благотворительный фонд поддержки отечественных учёных
  • Медаль, с 1993 года ежегодно присуждаемая канадским Институтом комбинаторики и её приложений за достижения в этой области математики.


В 2007 году Центробанк РФ выпустил памятную монету в ознаменование 300-летия со дня рождения Леонарда Эйлера:

Портрет Эйлера помещался также на швейцарскую 10-франковую банкноту

и на почтовые марки Швейцарии, России и Германии.

Имя Эйлера носят следующие математические объекты:

  • теорема Эйлера в теории чисел
  • теорема вращения Эйлера
  • теорема Эйлера в планиметрии
  • теорема Эйлера в комбинаторике
  • гипотеза Эйлера в теории чисел
  • теорема Эйлера для многогранников
  • лемма Эйлера
  • уравнения Эйлера - Лагранжа
  • уравнения Эйлера - Пуассона
  • уравнения Эйлера в механике
  • уравнение Эйлера в гидродинамике
  • эйлеровы точки либрации
  • уравнение Эйлера - Бернулли
  • функция Эйлера в теории чисел
  • функция Эйлера в комплексном анализе
  • тождество Эйлера в теории чисел
  • тождество Эйлера в комплексном анализе
  • тождество Эйлера о четырёх квадратах
  • тождество Эйлера в алгебре многочленов
  • формула Эйлера в комплексном анализе
  • формула Эйлера в кинематике твёрдого тела
  • формула Эйлера в геометрии треугольника
  • формула Эйлера в геометрии четырёхугольника
  • формула Эйлера для суммы первых членов гармоничного ряда.
  • формула Эйлера в теории графов
  • эйлерова характеристика (алгебраическая топология)
  • интегралы Эйлера первого рода и второго рода
  • интеграл Эйлера - Пуассона
  • постоянная Эйлера - Маскерони
  • число Эйлера
  • углы Эйлера
  • многочлены Эйлера
  • преобразование Эйлера
  • прямая Эйлера в геометрии треугольника
  • окружность Эйлера (окружность девяти точек)
  • круги Эйлера
  • эйлеров цикл, эйлерова цепь, эйлеров граф в теории графов
  • эйлеров сплайн
  • эйлерова сила
  • подстановки Эйлера.

По материалам книг: Д. Самин «100 великих учёных» (Москва, «Вече», 2004) и «Шеренга великих математиков» (Варшава, изд. Наша Ксенгарня, 1970), сайта aif.ru и Википедии.


1707-1783

Работы Эйлера по геометрии

Всех работ Эйлера по геометрии 75, и они занимают три тома полного собрания его сочинений. Часть, из них хотя и любопытна, но не очень важна. Некоторые же просто составили эпоху. Во-первых, Эйлера надо считать одним из зачинателей исследований по геометрии в пространстве вообще. Он первый дал связное изложение аналитической геометрии в пространстве (во «Введении в анализ») и, в частности, ввел так называемые углы Эйлера, позволяющие изучать повороты тела вокруг точки. В работе 1752 года «Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями», Эйлер дал доказательство того, что у выпуклого многогранника с В вершин, Р ребер и Г граней эти числа всегда связаны соотношениями В - Р + Г = 2 . Это в некотором смысле первая в истории математики крупная теорема топологии, самой глубокой части геометрии, которая (в несколько более общем виде) не утратила значения до сих пор. Топология изучает свойства фигур, не меняющиеся, если фигуру можно как угодно растягивать, сжимать и изгибать, но нельзя склеивать и рвать.

В работе «Исследование о кривизне поверхностей» (1760 год) Эйлер рассматривает вопрос, до того никем подробно не изучавшийся. Ответ на вопрос о том, какова изогнутость линии на плоскости в данной ее точке, состоит просто в нахождении радиуса такой окружности, которая так же изогнута. Он был решен Ньютоном. Этот радиус равен

где y = f(x) - уравнение линии, а у" и у" - ее первая и вторая производные в этой точке.

Для поверхности все гораздо сложнее. Метод исследования этого вопроса очень характерен для Эйлера. Пусть М - точка поверхности. Он сначала находит формулу для радиуса кривизны R в точке М для кривой, получающейся сечением поверхности совсем произвольной плоскостью, проходящей через М . Формула получается сложной. Затем он рассматривает только нормальные сечения - такие, когда секущая плоскость проходит через нормаль (т. е. через перпендикуляр) в М к плоскости, касающейся поверхности в точке М. Формула становится проще. Наконец, он обнаруживает, что есть такие два взаимно перпендикулярных («главных») нормальных сечения, радиусы кривизны для которых R 1 и R 2 - наибольший и наименьший. При их помощи получается уже совсем простая формула для радиуса кривизны любого нормального сечения.

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т. е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной. В следующей работе 1771 года «О телах, поверхность которых может быть развернута в плоскость» Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить, лишь изгибая плоскость, но не растягивая ее и не сжимая (как лист бумаги, который легко изгибается, но почти нерастяжим), если она не коническая и не цилиндрическая (т. е. не получается движением образующей прямой, проходящей постоянно через одну точку или параллельно самой себе), представляет собой совокупность касательных к некоторой пространственной кривой (ее ребру возврата).

Столь же замечательны работы Эйлера по картографическим проекциям.

В заключение описания геометрических работ Эйлера мы приводим высказывание немецкого математика Коммереля: «Слава и заслуги Гаусса не пострадают, если мы укажем на то, что ряд мыслей и методов, которые Гаусс так блестяще использовал в «Disquisitiones generates» (правда, частично лишь в специальной форме или лишь неполно формулированные), имеется уже у Эйлера. Речь идет, например, о сферическом отображении (когда куску поверхности ставится в соответствие кусок сферы радиуса 1, состоящий из всех таких точек, в которых радиусы этой сферы параллельны нормалям к поверхности в точках этого ее куска)-, о задании поверхности в параметрической форме, совпадении линейных элементов как условии наложимости при изгибании, об исследовании геодезических линий (т. е. кратчайших линий на поверхности между двумя ее точками) при помощи угла, который они образуют с кривыми некоторого семейства на поверхности, и другие» .

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развертывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного, должны были казаться прямо-таки трансцендентными. А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

По материалам книги
"Замечательные ученые"
под ред. С.П. Капицы

За время существования Академии наук в России, видимо, одним из самых знаменитых её членов был математик Леонард Эйлер.

Он стал первым, кто в своих работах начал возводить последовательное здание анализа бесконечно малых. Только после его исследований, изложенных в грандиозных томах его трилогии «Введение в анализ», «Дифференциальное исчисление» и «Интегральное исчисление», анализ стал вполне оформившейся наукой - одним из самых глубоких научных достижений человечества.

Леонард Эйлер родился в швейцарском городе Базеле 15 апреля 1707 года. Отец его, Павел Эйлер, был пастором в Рихене (близ Базеля) и имел некоторые познания в математике. Отец предназначал своего сына к духовной карьере, но сам, интересуясь математикой, преподавал её и сыну, надеясь, что она ему впоследствии пригодится в качестве интересного и полезного занятия. По окончании домашнего обучения тринадцатилетний Леонард был отправлен отцом в Базель для слушания философии.

Среди других предметов на этом факультете изучались элементарная математика и астрономия, которые преподавал Иоганн Бернулли. Вскоре Бернулли заметил талантливость юного слушателя и начал заниматься с ним отдельно.

Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его всё больше влекло к математике. Эйлер стал бывать в доме своего учителя, и между ним и сыновьями Иоганна Бернулли - Николаем и Даниилом - возникла дружба, сыгравшая очень большую роль в жизни Эйлера.

В 1725 году братья Бернулли были приглашены в члены Петербургской академии наук, недавно основанной императрицей Екатериной I. Уезжая, Бернулли обещали Леонарду известить его, если найдётся и для него подходящее занятие в России. На следующий год они сообщили, что для Эйлера есть место, но, однако, в качестве физиолога при медицинском отделении академии. Узнав об этом, Леонард немедленно записался в студенты медицины Базельского университета. Прилежно и успешно изучая науки медицинского факультета, Эйлер находит время и для математических занятий. За это время он написал напечатанную потом, в 1727 году, в Базеле диссертацию о распространении звука и исследование по вопросу о размещении мачт на корабле.

В Петербурге имелись самые благоприятные условия для расцвета гения Эйлера: материальная обеспеченность, возможность заниматься любимым делом, наличие ежегодного журнала для публикации трудов. Здесь же работала самая большая тогда в мире группа специалистов в области математических наук, в которую входили Даниил Бернулли (его брат Николай скончался в 1726 году), разносторонний Х. Гольдбах, с которым Эйлера связывали общие интересы к теории чисел и другим вопросам, автор работ по тригонометрии Ф. Х. Майера, астроном и географ Ж. Н. Делиль, математик и физик Г. В. Крафт и другие. С этого времени Петербургская академия стала одним из главных центров математики в мире.

Открытия Эйлера, которые благодаря его оживлённой переписке нередко становились известными задолго до издания, делают его имя всё более широко известным. Улучшается его положение в Академии наук: в 1727 году он начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т. е. действительным членом академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д. Бернулли, возвратившийся в том же году в Базель. Рост авторитета Эйлера нашёл своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «учёнейшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 году - к «знаменитейшему и остроумнейшему математику», а в 1745 году - к «несравненному Леонарду Эйлеру - главе математиков».

В 1735 году академии потребовалось выполнить весьма сложную работу по расчёту траектории кометы. По мнению академиков, на это нужно было употребить несколько месяцев труда. Эйлер взялся выполнить это в три дня и исполнил работу, но вследствие этого заболел нервною горячкою с воспалением правого глаза, которого он и лишился. Вскоре после этого, в 1736 году, появились два тома его аналитической механики. Потребность в этой книге была большая; немало было написано статей по разным вопросам механики, но хорошего трактата по механике не имелось.

В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году - новая теория музыки. Затем в 1840 году Эйлер написал сочинение о приливах и отливах морей, увенчанное одной третью премии Французской академии; две других трети были присуждены Даниилу Бернулли и Маклорену за сочинения на ту же тему.

В конце 1740 года власть в России попала в руки регентши Анны Леопольдовны и её окружения. В столице сложилась тревожная обстановка. В это время прусский король Фридрих II задумал возродить основанное ещё Лейбницем Общество наук в Берлине, долгие годы почти бездействовавшее. Через своего посла в Петербурге король пригласил Эйлера в Берлин. Эйлер, считая, что «положение начало представляться довольно неуверенным», приглашение принял.

В Берлине Эйлер поначалу собрал около себя небольшое учёное общество, а затем был приглашён в состав вновь восстановленной Королевской академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нём указывается на способ интегрирования рациональных дробей путём разложения их на частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.

Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая за ними в большой мере сохраняется и до сих пор. Эйлер, кроме того, начал целую новую главу анализа - вариационное исчисление. Это его начинание вскоре подхватил Лагранж и таким образом сложилась новая наука.

В 1744 году Эйлер напечатал в Берлине три сочинения о движении светил: первое - теория движения планет и комет, заключающая в себе изложение способа определения орбит из нескольких наблюдений; второе и третье - о движении комет.

Семьдесят пять работ Эйлер посвятил геометрии. Часть из них хотя и любопытна, но не очень важна. Некоторые же просто составили эпоху. Во-первых, Эйлера надо считать одним из зачинателей исследований по геометрии в пространстве вообще. Он первый дал связное изложение аналитической геометрии в пространстве (во «Введении в анализ») и, в частности, ввёл так называемые углы Эйлера, позволяющие изучать повороты тела вокруг точки.

В работе 1752 года «Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями», Эйлер нашёл соотношение между числом вершин, рёбер и граней многогранника: сумма числа вершин и граней равна числу рёбер плюс два. Такое соотношение предполагал ещё Декарт, но Эйлер доказал его в своих мемуарах. Это в некотором смысле первая в истории математики крупная теорема топологии - самой глубокой части геометрии.

Занимаясь вопросами о преломлении лучей света и написав немало мемуаров об этом предмете, Эйлер издал в 1762 году сочинение, в котором предлагается устройство сложных объективов с целью уменьшения хроматической аберрации. Английский художник Долдонд, открывший два различной преломляемости сорта стекла, следуя указаниям Эйлера, построил первые ахроматические объективы.

В 1765 году Эйлер написал сочинение, где решает дифференциальные уравнения вращения твёрдого тела, которые носят название Эйлеровых уравнений вращения твёрдого тела.

Много написал учёный сочинений об изгибе и колебании упругих стержней. Вопросы эти интересны не только в математическом, но и в практическом отношении.

Фридрих Великий давал учёному поручения чисто инженерного характера. Так, в 1749 году он поручил ему осмотреть канал Фуно между Гавелом и Одером и дать рекомендации по исправлению недостатков этого водного пути. Далее ему поручено было исправить водоснабжение в Сан-Суси.

Результатом этого стало более двадцати мемуаров по гидравлике, написанных Эйлером в разное время. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности к давлению называются гидродинамическими уравнениями Эйлера.

Покинув Петербург, Эйлер сохранил самую тесную связь с русской Академией наук, в том числе официальную: он был назначен почётным членом, и ему была определена крупная ежегодная пенсия, а он, со своей стороны, взял на себя обязательства в отношении дальнейшего сотрудничества. Он закупал для нашей академии книги, физические и астрономические приборы, подбирал в других странах сотрудников, сообщая подробнейшие характеристики возможных кандидатов, редактировал математический отдел академических записок, выступал как арбитр в научных спорах между петербургскими учёными, присылал темы для научных конкурсов, а также информацию о новых научных открытиях и т. д. В доме Эйлера в Берлине жили студенты из России: М. Софронов, С. Котельников, С. Румовский, последние позднее стали академиками.

Из Берлина Эйлер, в частности, вёл переписку с Ломоносовым, в творчестве которого он высоко ценил счастливое сочетание теории с экспериментом. В 1747 году он дал блестящий отзыв о присланных ему на заключение статьях Ломоносова по физике и химии, чем немало разочаровал влиятельного академического чиновника Шумахера, крайне враждебно относившегося к Ломоносову.

В переписке Эйлера с его другом академиком Петербургской академии наук Гольдбахом мы находим две знаменитые «задачи Гольдбаха»: доказать, что всякое нечётное натуральное число есть сумма трёх простых чисел, а всякое чётное - двух. Первое из этих утверждений было при помощи весьма замечательного метода доказано уже в наше время (1937) академиком И. М. Виноградовым, а второе не доказано до сих пор.

Эйлера тянуло назад в Россию. В 1766 году он получил через посла в Берлине, князя Долгорукова, приглашение императрицы Екатерины II вернуться в Академию наук на любых условиях. Несмотря на уговоры остаться, он принял приглашение и в июне прибыл в Петербург.

Императрица предоставила Эйлеру средства на покупку дома. Старший из его сыновей Иоганн Альбрехт стал академиком в области физики, Карл занял высокую должность в медицинском ведомстве, Христофора, родившегося в Берлине, Фридрих II долго не отпускал с военной службы, и потребовалось вмешательство Екатерины II, чтобы тот смог приехать к отцу. Христофор был назначен директором Сестрорецкого оружейного завода.

Ещё в 1738 году Эйлер ослеп на один глаз, а в 1771-м после операции почти совсем потерял зрение и мог писать только мелом на чёрной доске, но благодаря ученикам и помощникам. И. А. Эйлеру, А. И. Локселю, В. Л. Крафту, С. К. Котельникову, М. Е. Головину, а главное Н. И. Фуссу, прибывшему из Базеля, продолжал работать не менее интенсивно, чем раньше.

Эйлер, при своих гениальных способностях и замечательной памяти, продолжал работать, диктовать свои новые мемуары. Только с 1769 по 1783 год Эйлер продиктовал около 380 статей и сочинений, а за свою жизнь написал около 900 научных работ.

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т. е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.

В следующей работе 1771 года «О телах, поверхность которых может быть развёрнута в плоскость» Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить лишь изгибая плоскость, но не растягивая её и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.

Столь же замечательны работы Эйлера по картографическим проекциям.

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развёртывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного, должны были казаться прямо-таки трансцендентными. А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

Неутомимость и настойчивость в научных исследованиях Эйлера были таковы, что в 1773 году, когда сгорел его дом и погибло почти всё имущество его семейства, он и после этого несчастья продолжал диктовать свои исследования. Вскоре после пожара искусный окулист, барон Вентцель, произвёл операцию снятия катаракты, но Эйлер не выдержал надлежащего времени без чтения и ослеп окончательно.

В том же 1773 году умерла жена Эйлера, с которой он прожил сорок лет. Через три года он вступил в брак с её сестрой, Саломеей Гзелль. Завидное здоровье и счастливый характер помогали Эйлеру «противостоять ударам судьбы, которые выпали на его долю… Всегда ровное настроение, мягкая и естественная бодрость, какая-то добродушная насмешливость, умение наивно и забавно рассказывать делали разговор с ним столь же приятным, сколь и желанным…» Он мог иногда вспылить, но «был не способен долго питать против кого-либо злобу…» - вспоминал Н. И. Фусс.

Эйлера постоянно окружали многочисленные внуки, часто на руках у него сидел ребёнок, а на шее лежала кошка. Он сам занимался с детьми математикой. И всё это не мешало ему работать!

18 сентября 1783 года Эйлер скончался от апоплексического удара в присутствии своих помощников профессоров Крафта и Лекселя. Он был похоронен на Смоленском лютеранском кладбище. Академия заказала известному скульптору Ж. Д. Рашетту, хорошо знавшему Эйлера, мраморный бюст покойного, а княгиня Дашкова подарила мраморный пьедестал.

До конца XVIII века конференц-секретарём академии оставался И. А. Эйлер, которого сменил Н. И. Фусс, женившийся на дочери последнего, а в 1826 году - сын Фусса Павел Николаевич, так что организационной стороной жизни академии около ста лет ведали потомки Леонарда Эйлера. Эйлеровские традиции оказали сильное влияние и на учеников Чебышёва: А. М. Ляпунова, А. Н. Коркина, Е. И. Золотарёва, А. А. Маркова и других, определив основные черты петербургской математической школы.

Нет учёного, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

Эйлер нашёл доказательства всех теорем Ферма, показал неверность одной из них, а знаменитую Великую теорему Ферма доказал для «трёх» и «четырёх». Он также доказал, что всякое простое число вида 4n+1 всегда разлагается на сумму квадратов других двух чисел.

Эйлер начал последовательно строить элементарную теорию чисел. Начав с теории степенных вычетов, он затем занялся квадратичными вычетами. Это так называемый квадратичный закон взаимности. Эйлер также много лет занимался решением неопределённых уравнений второй степени с двумя неизвестными.

Во всех этих трёх фундаментальных вопросах, которые больше двух столетий после Эйлера и составляли основной объём элементарной теории чисел, учёный ушёл очень далеко, однако во всех трёх его постигла неудача. Полное доказательство получили Гаусс и Лагранж.

Эйлеру принадлежит инициатива создания и второй части теории чисел - аналитической теории чисел, в которой глубочайшие тайны целых чисел, например, распределение простых чисел в ряду всех натуральных чисел, получаются из рассмотрения свойств некоторых аналитических функций.

Созданная Эйлером аналитическая теория чисел продолжает развиваться и в наши дни.

Последние материалы раздела:

История России от Рюрика до Путина!
История России от Рюрика до Путина!

Путинцев Севастьян, Митрафанов Вадим ГЕРОИ ВОЙНЫ 1812 года Пётр Иванович Багратион 1778 - 1834 Князь, генерал-майор. Из грузинского рода царей...

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....