Ядерная структура атома. Ядерные структуры

Ядерные структуры

Простейшие синтаксические модели, являющиеся основой речевой деятельности, поскольку они используются для разнообразных трансформаций по требованиям контекста.


Словарь-справочник лингвистических терминов. Изд. 2-е. - М.: Просвещение . Розенталь Д. Э., Теленкова М. А. . 1976 .

Смотреть что такое "ядерные структуры" в других словарях:

    ядерные структуры - простейшие синтаксические модели данного языка, являющиеся основой речевой деятельности в том смысле, что пользующиеся данным языком подвергают эти модели разнообразным трансформациям в зависимости от ее требований контекста. Ср. ядерные… …

    Превращения ат. ядер при вз ствии с ч цами, в т. ч. с g квантами или друг с другом. Для осуществления Я. р. необходимо сближение ч ц (двух ядер, ядра и нуклона и т. д.) на расстояние 10 13 см. Энергия налетающих положительно заряж. ч ц должна… … Физическая энциклопедия

    ядерные фибриллы - Нитевидные внутриядерные структуры, являющиеся фрагментами ядерного скелета [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.] Тематики генетика EN nuclear fibrils … Справочник технического переводчика

    Превращения атомных ядер при взаимодействии с элементарными частицами, γ квантами или друг с другом. Для осуществления Я. р. необходимо сближение частиц (двух ядер, ядра и нуклона и т. д.) на расстояние Ядерные реакции 10 13 см. Энергия… …

    Обмен веществами между ядром и цитоплазмой клетки осуществляется посредством ядерных пор транспортных каналов, пронизывающих двухслойную ядерную оболочку. Переход молекул из ядра в цитоплазму и в обратном направлении называется ядерно… … Википедия

    Сильное взаимодействие (цветовое взаимодействие, ядерное взаимодействие) одно из четырёх фундаментальных взаимодействий в физике. Сильное взаимодействие действует в масштабах атомных ядер и меньше, отвечая за притяжение между нуклонами в ядрах и … Википедия

    Nuclear fibrils ядерные фибриллы. Hитевидные внутриядерные структуры, являющиеся фрагментами ядерного скелета . (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во… … Молекулярная биология и генетика. Толковый словарь.

    ядерные предложения - простейшие синтаксические построения данного языка, в которых предметы обозначены существительными, процессы глаголами, а признаки прилагательными и наречиями, от которых путем серии трансформаций образуются поверхностные структуры … Толковый переводоведческий словарь

    ядерные реакции - превращение атомов ядер при соударении с другими ядрами, элементарными частицами или гамма квантами. При бомбардировке тяжелых ядер более легкими получены все трансурановые элементы. Сокращенно ядерную реакцию, например, типа… … Энциклопедический словарь по металлургии

    Ядерные процессы, в которых вносимая в атомное ядро энергия передаётся преимущественно одному или небольшой группе нуклонов (См. Нуклоны). П. я. р. многообразны, они вызываются всевозможными налетающими частицами (от γ квантов до… … Большая советская энциклопедия

Книги

  • Инновационная деятельность в атомной отрасли (на примере стратегии развития ядерных топливных циклов, включая инновационные). Книга 1. Основные принципы инновационной политики , А. В. Путилов, А. Г. Воробьев, М. Н. Стриханов. В учебном пособии раскрываются роль и место инноваций в общественном развитии на примере атомной отрасли; цели и задачи национальной инновационной политики. Рассмотрены инструменты…
  • Введение в физику микромира. Физика частиц и ядер , Л. И. Сарычева. В настоящей книге представлены основные характеристики фундаментальных и элементарных частиц и процессы, происходящие с ними в различных типах взаимодействий. Описана современная…

Ядро клетки - это одна из основных составных частей всех растительных и животных клеток, неразрывно связанная с обменом, передачей наследственной информации и др.

Форма ядра клетки варьирует в зависимости от типа клетки. Имеются овальные, шаровидные и неправильной формы - подковообразные или многолопастные ядро клетки (у лейкоцитов), четковидные ядра клетки (у некоторых инфузорий), разветвленные ядра клетки (в железистых клетках насекомых) и др. Величина ядра клетки различна, но обычно связана с объемом цитоплазмы. Нарушение этого соотношения в процессе роста клетки приводит к клеточному делению. Количество ядер клетки также неодинаково - большинство клеток имеет одно ядро, хотя встречаются двуядерные и многоядерные клетки (например, некоторые клетки печени и костного мозга). Положение ядра в клетке является характерным для клеток каждого типа. В зародышевых клетках ядро обычно находится в центре клетки, но может смещаться по мере развития клетки и образования в цитоплазме специализированных участков или отложения в ней резервных веществ.

В ядре клетки различают основные структуры: 1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой [имеются данные, указывающие на то, что ядерная мембрана (состоящая из двух слоев) без перерыва переходит в мембраны эндоплазматической сети (см. ) и комплекса Гольджи]; 2) ядерный сок, или кариоплазму,- полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра; 3) (см.), которые в неделящемся ядре видны только с помощью специальных методов микроскопии (на окрашенном срезе неделящейся клетки хромосомы обычно имеют вид неправильной сети из темных тяжей и зернышек, в совокупности называемых ); 4) одно или несколько сферических телец - ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

Ядро клетки обладает сложной химической организацией, в которой важнейшую роль играют нуклеопротеиды - продукт соединения с белками. В жизни клетки имеются два основных периода: интерфазный, или метаболический, и митотический, или период деления. Оба периода характеризуются главным образом изменениями в строении ядра клетки. В интерфазе ядро клетки находится в покоящемся состоянии и участвует в синтезе белков, регуляции формообразования, процессах секреции и других жизненных отправлениях клетки. В период деления в ядре клетки происходят изменения, приводящие к перераспределению хромосом и образованию дочерних ядер клетки; наследственная информация передается, таким образом, через ядерные структуры новому поколению клеток.

Ядра клетки размножаются только делением, при этом в большинстве случаев делятся и сами клетки. Обычно различают: прямое деление ядра клетки путем перешнуровки - амитоз и самый распространенный способ деления ядер клетки- типичное непрямое деление, или митоз (см.).

Действие ионизирующей радиации и некоторых других факторов способно изменять заключенную в ядре клетки генетическую информацию, приводя к различным изменениям ядерного аппарата, что иногда может приводить к гибели самих клеток или служить причиной наследственных аномалий у потомства (см. Наследственность), Поэтому изучение структуры и функций ядра клетки, особенно связей между хромосомными соотношениями и наследованием признаков, которыми занимается цитогенетика, имеет существенное практическое значение для медицины (см. ).

См. также Клетка.

Ядро клетки - важнейшая составная часть всех растительных и животных клеток.

Клетка, лишенная ядра или с поврежденным ядром, не способна нормально выполнять свои функции. Ядро клетки, точнее, организованная в его хромосомах (см.) дезоксирибонуклеиновая кислота (ДНК),- носитель наследственной информации, определяющей все особенности клетки, тканей и целого организма, его онтогенез и свойственные организму нормы реагирования на воздействия среды. Заключенная в ядре наследственная информация закодирована в составляющих хромосомы молекулах ДНК последовательностью четырех азотистых оснований: аденина, тимина, гуанина и цитозина. Эта последовательность является матрицей, определяющей структуру синтезируемых в клетке белков.

Даже самые незначительные нарушения структуры ядра клетки ведут к необратимым изменениям свойств клетки или к ее гибели. Опасность ионизирующих излучений и многих химических веществ для наследственности (см.) и для нормального развития плода имеет в своей основе повреждения ядер в половых клетках взрослого организма или в соматических клетках развивающегося эмбриона. В основе преобразования нормальной клетки в злокачественную также лежат определенные нарушения структуры ядра клетки.

Размеры и форма ядра клетки и соотношение его объема и объема всей клетки характерны для различных тканей. Одним из главных признаков, отличающих элементы белой и красной крови, являются форма и размер их ядер. Ядра лейкоцитов могут быть неправильной формы: изогнуто-колбасовидной, лапчатой или четковидной; в последнем случае каждый участок ядра соединен с соседним тонкой перемычкой. В зрелых мужских половых клетках (сперматозоидах) ядро клетки составляет подавляющую часть всего объема клетки.

Зрелые эритроциты (см.) человека и млекопитающих не имеют ядра, так как они теряют его в процессе дифференцировки. Они имеют ограниченный срок жизни и не способны размножаться. В клетках бактерий и сине-зеленых водорослей отсутствует резко очерченное ядро. Однако в них содержатся все характерные для ядра клетки химические вещества, распределяющиеся при делении по дочерним клеткам с такой же правильностью, как и в клетках высших многоклеточных организмов. У вирусов и фагов ядро представлено единственной молекулой ДНК.

При рассмотрении покоящейся (неделящейся) клетки в световом микроскопе ядро клетки может иметь вид бесструктурного пузырька с одним или несколькими ядрышками. Ядро клетки хорошо красится специальными ядерными красками (гематоксилин, метиленовый синий, сафранин и др.), которые обычно используют в лабораторной практике. При помощи фазово-контрастного устройства ядро клетки можно исследовать и прижизненно. В последние годы для изучения процессов, протекающих в ядре клетки, широко используют микрокинематографию, меченые атомы С14 и Н3 (ауторадиография) и микроспектрофотометрию. Последний метод особенно успешно применяют для изучения количественных изменений ДНК в ядре в процессе жизненного цикла клетки. Электронный микроскоп позволяет выявить детали тонкой структуры ядра покоящейся клетки, необнаруживаемые в оптическом микроскопе (рис. 1).

Рис. 1. Современная схема строения клетки, основанная на наблюдениях в электронном микроскопе: 1 - цитоплазма; 2 - аппарат Гольджи; 3 - центросомы; 4 - эндоплазматический ретикулум; 5 - митохондрии; 6 - оболочка клетки; 7 - оболочка ядра; 8 - ядрышко; 9 - ядро.


При делении клеток - кариокинезе или митозе (см.) - ядро клетки претерпевает ряд сложных преобразований (рис. 2), во время которых становятся отчетливо видимыми его хромосомы. Перед делением клетки каждая хромосома ядра синтезирует из веществ, присутствующих в ядерном соке, себе подобную, после чего материнская и дочерняя хромосомы расходятся к противоположным полюсам делящейся клетки. В результате каждая дочерняя клетка получает такой же хромосомный набор, какой был у материнской клетки, а вместе с ним и заключенную в нем наследственную информацию. Митоз обеспечивает идеально правильное разделение всех хромосом ядра на две равнозначные части.

Митоз и мейоз (см.) являются важнейшими механизмами, обеспечивающими закономерности явлений наследственности. У некоторых простейших организмов, а также в патологических случаях в клетках млекопитающих и человека ядра клетки делятся путем простой перетяжки, или амитоза. В последние годы показано, что и при амитозе происходят процессы, обеспечивающие разделение ядра клетки на две равнозначные части.

Набор хромосом в ядре клетки особи называют кариотипом (см.). Кариотип во всех клетках данной особи, как правило, одинаков. Многие врожденные аномалии и уродства (синдромы Дауна, Клайнфелтера, Тернера-Шерешевского и др.) обусловлены различными нарушениями кариотипа, возникшими либо на ранних стадиях эмбриогенеза, либо при созревании половой клетки, из которой возникла аномальная особь. Аномалии развития, связанные с видимыми нарушениями хромосомных структур ядра клетки, называют хромосомными болезнями (см. Наследственные болезни). Различные повреждения хромосом могут быть вызваны действием физических или химических мутагенов (рис. 3). В настоящее время методы, позволяющие быстро и точно устанавливать кариотип человека, используют для ранней диагностики хромосомных болезней и для уточнения этиологии некоторых заболеваний.


Рис. 2. Стадии митоза в клетках культуры ткани человека (перевиваемый штамм НЕр-2): 1 - ранняя профаза; 2 - поздняя профаза (исчезновение ядерной оболочки); 3 - метафаза (стадия материнской звезды), вид сверху; 4 - метафаза, вид сбоку; 5 - анафаза, начало расхождения хромосом; 6 - анафаза, хромосомы разошлись; 7 - телофаза, стадия дочерних клубков; 8 - телофаза и разделение клеточного тела.


Рис. 3. Повреждения хромосом, вызываемые ионизирующей радиацией и химическими мутагенами: 1 - нормальная телофаза; 2-4 - телофазы с мостами и фрагментами в эмбриональных фибробластах человека, облученных рентгеновыми лучами в дозе 10 р; 5 и 6 - то же в кроветворных клетках морской свинки; 7 - хромосомный мост в эпителии роговицы мыши, облученной дозой в 25 р; 8 - фрагментация хромосом в эмбриональных фибробластах человека в результате воздействия нитрозоэтилмочевиной.

Важный органоид ядра клетки - ядрышко - является продуктом жизнедеятельности хромосом. Оно продуцирует рибонуклеиновую кислоту (РНК), являющуюся обязательным промежуточным звеном в синтезе белка, вырабатываемого каждой клеткой.

Ядро клетки отделено от окружающей цитоплазмы (см.) оболочкой, толщина которой 60-70 Å.

Через поры в оболочке вещества, синтезируемые в ядре, поступают в цитоплазму. Пространство между оболочкой ядра и всеми его органоидами заполнено кариоплазмой, состоящей из основных и кислых белков, ферментов, нуклеотидов, неорганических солей и других низкомолекулярных соединений, необходимых для синтеза дочерних хромосом при делении ядра клетки.

Ядро клетки - центральный органоид, один из самых важных. Наличие его в клетке является признаком высокой организации организма. Клетка, имеющая оформленное ядро, называется эукариотической. Прокариоты - это организмы, состоящие из клетки, не имеющей оформленного ядра. Если подробно рассмотреть все его составляющие, то можно понять, какую функцию выполняет ядро клетки.

Структура ядра

  1. Ядерная оболочка.
  2. Хроматин.
  3. Ядрышки.
  4. Ядерный матрикс и ядерный сок.

Структура и функции ядра клетки зависят от типа клеток и их предназначения.

Ядерная оболочка

Ядерная оболочка имеет две мембраны - внешнюю и внутреннюю. Они разделены между собой перинуклеарным пространством. Оболочка имеет поры. Ядерные поры необходимы для того, чтобы различные крупные частицы и молекулы могли перемещаться из цитоплазмы в ядро и обратно.

Ядерные поры образуются в результате слияния внутренней и наружной мембраны. Поры представляют собой округлые отверстия, имеющие комплексы, в которые входят:

  1. Тонкая диафрагма, закрывающая отверстие. Она пронизана цилиндрическими каналами.
  2. Белковые гранулы. Они находятся с двух сторон от диафрагмы.
  3. Центральная белковая гранула. Она связана с периферическими гранулами фибриллами.

Количество пор в ядерной оболочке зависит от того, насколько интенсивно в клетке проходят синтетические процессы.

Ядерная оболочка состоит из внешней и внутренней мембран. Внешняя переходит в шероховатый ЭПР (эндоплазматический ретикулум).

Хроматин

Хроматин - важнейшее вещество, входящее в ядро клетки. Функции его - это хранение генетической информации. Он представлен эухроматином и гетерохроматином. Весь хроматин - это совокупность хромосом.

Эухроматин - это части хромосом, которые активно принимают участие в транскрипции. Такие хромосомы находятся в диффузном состоянии.

Неактивные отделы и целые хромосомы представляют собой конденсированные глыбки. Это и есть гетерохроматин. При изменении состояния клетки гетерохроматин может переходить в эухроматин, и наоборот. Чем больше в ядре гетерохроматина, тем ниже скорость синтеза рибонуклеиновой кислоты (РНК) и тем меньше функциональная активность ядра.

Хромосомы

Хромосомы - это особые образования, которые возникают в ядре только во время деления. Хромосома состоит из двух плеч и центромеры. По форме их делят на:

  • Палочкообразные. Такие хромосомы имеют одно большое плечо, а другое маленькое.
  • Равноплечные. Имеют относительно одинаковые плечи.
  • Разноплечные. Плечи хромосомы зрительно отличаются между собой.
  • С вторичными перетяжками. У такой хромосомы имеется нецентромерная перетяжка, которая отделяет спутничный элемент от основной части.

У каждого вида количество хромосом всегда одинаково, но стоит отметить, что от их количества не зависит уровень организации организма. Так, у человека имеется 46 хромосом, у курицы - 78, у ежа - 96, а у березы - 84. Наибольшее число хромосом имеет папоротник Ophioglossum reticulatum. У него 1260 хромосом на каждую клетку. Наименьшее число хромосом имеет самец-муравей вида Myrmecia pilosula. У него только 1 хромосома.

Именно изучив хромосомы, ученые поняли, каковы функции ядра клетки.

В состав хромосом входят гены.

Ген

Гены - это участки молекул дезоксирибонуклеиновой кислоты (ДНК), в которых закодированы определенные составы молекул белка. В результате этого у организма проявляется тот или иной признак. Ген передается по наследству. Так, ядро в клетке выполняет функцию передачи генетического материала следующим поколениям клеток.

Ядрышки

Нуклеола - это самая плотная часть, которая входит в ядро клетки. Функции, которые она выполняет, очень важны для всей клетки. Обычно имеет округлую форму. Количество ядрышек варьируется в разных клетках - их может быть два, три либо вооще не быть. Так, в клетках дробящихся яиц нуклеолы нет.

Структура ядрышка:

  1. Гранулярный компонент. Это гранулы, которые находятся на периферии ядрышка. Их размер варьируется от 15 нм до 20 нм. В некоторых клетках ГК может быть равномерно распределен по всему ядрышку.
  2. Фибриллярный компонент (ФК). Это тонкие фибриллы, размером от 3 нм до 5 нм. Фк представляет собой диффузную часть ядрышка.

Фибриллярные центры (ФЦ) - это участки фибрилл, имеющие низкую плотность, которые, в свою очередь, окружены фибриллами с высокой плотностью. Химический состав и строение ФЦ почти такие же, как и у ядрышковых организаторов митотических хромосом. В их состав входят фибриллы толщиной до 10 нм, в которых есть РНК-полимераза I. Это подтверждается тем, что фибриллы окрашиваются солями серебра.

Структурные типы ядрышек

  1. Нуклеолонемный или ретикулярный тип. Характеризуется большим количеством гранул и плотного фибриллярного материала. Данный тип структуры ядрышка характерен для большинства клеток. Его можно наблюдать как в животных клетках, так в растительных.
  2. Компактный тип. Характеризуется небольшой выраженностью нуклеономы, большим количеством фибриллярных центров. Встречается в растительных и животных клетках, в которых активно происходит процесс синтеза белка и РНК. Этот тип ядрышек характерен для клеток, активно размножающихся (клетки культуры ткани, клетки растительных меристем и др.).
  3. Кольцевидный тип. В световой микроскоп данный тип виден как кольцо со светлым центром - фибриллярный центр. Размер таких ядрышек в среднем 1 мкм. Данный тип характерен только для животных клеток (эндотелиоциты, лимфоциты и др.). В клетках с таким типом ядрышек довольно низкий уровень транскрипции.
  4. Остаточный тип. В клетках этого типа ядрышек не происходит синтез РНК. При определенных условиях данный тип может переходить в ретикулярный или компактный, т. е. активироваться. Такие ядрышки характерны для клеток шиповатого слоя кожного эпителия, нормобласта и др.
  5. Сегрегированный тип. В клетках с этим типом ядрышек не происходит синтез рРНК (рибосомной рибонуклеиновой кислоты). Это происходит, если клетка обработана каким-либо антибиотиком или химическим веществом. Слово «сегрегация» в данном случае обозначает «разделение» или «обособление», так как все компоненты ядрышек разделяются, что приводит к его уменьшению.

Почти 60% сухого веса ядрышек приходится на белки. Их количество очень велико и может достигать нескольких сотен.

Главная функция ядрышек - это синтез рРНК. Зародыши рибосом попадают в кариоплазму, затем через поры ядра просачиваются в цитоплазму и на ЭПС.

Ядерный матрикс и ядерный сок

Ядерный матрикс занимает почти все ядро клетки. Функции его специфичны. Он растворяет и равномерно распределяет все нуклеиновые кислоты в состоянии интерфазы.

Ядерный матрикс, или кариоплазма, - это раствор, в состав которого входят углеводы, соли, белки и другие неорганические и органические вещества. В нем содержатся нуклеиновые кислоты: ДНК, тРНК, рРНК, иРНК.

В состоянии деления клетки ядерная оболочка растворяется, образуются хромосомы, а кариоплазма смешивается с цитоплазмой.

Основные функции ядра в клетке

  1. Информативная функция. Именно в ядре находится вся информация о наследственности организма.
  2. Функция наследования. Благодаря генам, которые расположены в хромосомах, организм может передавать свои признаки из поколения в поколение.
  3. Функция объединения. Все органоиды клетки объединены в одно целое именно в ядре.
  4. Функция регуляции. Все биохимические реакции в клетке, физиологические процессы регулируются и согласуются ядром.

Один из самых важных органоидов - ядро клетки. Функции его важны для нормальной жизнедеятельности всего организма.

В процессе эволюции претерпевали ряд изменений. Появлению новых органелл предшествовали преобразования в атмосфере и литосфере молодой планеты. Одним из значительных приобретений стало клеточное ядро. Эукариотические организмы получили, благодаря наличию обособленных органелл, существенные преимущества перед прокариотами и быстро стали доминировать.

Клеточное ядро, строение и функции которого несколько отличаются в разных тканях и органах, позволило повысить качество биосинтеза РНК и передачу наследственной информации.

Происхождение

На сегодняшний день есть две основные гипотезы об образовании эукариотической клетки. Согласно симбиотической теории органеллы (например, жгутики или митохондрии) когда-то были отдельными прокариотическими организмами. Предки современных эукариот поглотили их. В результате образовался симбиотический организм.

Ядро при этом сформировалось в результате выпячивания внутрь участка цитоплазматической было необходимым приобретением на пути освоения клеткой нового способа питания, фагоцитоза. Захват пищи сопровождался повышением степени подвижности цитоплазмы. Генофоры, представлявшие собой генетический материал прокариотической клетки и прикреплявшиеся к стенкам, попадали в зону сильного «течения» и нуждались в защите. В результате и образовалось глубокое впячивание участка мембраны, содержавшего прикрепленные генофоры. В пользу этой гипотезы свидетельствует тот факт, что оболочка ядра неразрывно связана с цитоплазматической мембраной клетки.

Существует и другая версия развития событий. Согласно вирусной гипотезе происхождения ядра, оно сформировалось в результате заражения клетки древней археи. В нее внедрился ДНК-вирус и постепенно получил полный контроль над жизненными процессами. Ученые, считающие эту теорию более правильной, приводят массу доводов в ее пользу. Однако на сегодняшний день нет исчерпывающего доказательства ни для одной из существующих гипотез.

Одно или несколько

Большая часть клеток современных эукариот имеет ядро. Подавляющее их число содержит только одну подобную органеллу. Существуют, однако, и клетки, которые утратили ядро по причине некоторых функциональных особенностей. К ним относятся, например, эритроциты. Встречаются и клетки с двумя (инфузории) и даже несколькими ядрами.

Структура клеточного ядра

Вне зависимости от особенностей организма, строение ядра характеризуется набором типичных органелл. От внутреннего пространства клетки оно отгорожено двойной мембраной. Внутренние и внешние ее прослойки в некоторых местах сливаются, образуя поры. Их функция заключается в обмене веществ между цитоплазмой и ядром.

Пространство органеллы заполнено кариоплазмой, также называемой ядерным соком или нуклеоплазмой. В ней размещается хроматин и ядрышко. Иногда последний из названных органоид клеточного ядра присутствует не в единственном экземпляре. У некоторых же организмов ядрышки, наоборот, отсутствуют.

Мембрана

Ядерная оболочка образована липидами и состоит из двух слоев: наружного и внутреннего. По сути, это та же клеточная мембрана. Ядро сообщается с каналами эндоплазматической сети через перинуклеарное пространство, полость, образованную двумя слоями оболочки.

Наружная и внутренняя мембрана имеют свои особенности в строении, однако в целом довольно похожи.

Ближайший к цитоплазме

Наружный слой переходит в мембрану эндоплазматической сети. Ее основное отличие от последней — значительно более высокая концентрация белков в структуре. Мембрана, непосредственно контактирующая с цитоплазмой клетки, покрыта слоем рибосом с наружной стороны. С внутренней мембраной она соединяется многочисленными порами, представляющими собой довольно крупные белковые комплексы.

Внутренний слой

Обращенная в клеточное ядро мембрана, в отличие от наружной, гладкая, не покрытая рибосомами. Она ограничивает кариоплазму. Характерная особенность внутренней мембраны — слой ядерной ламины, выстилающий ее со стороны, соприкасающейся с нуклеоплазмой. Эта специфическая белковая структура поддерживает форму оболочки, участвует в регуляции экспрессии генов, а также способствует прикреплению хроматина к мембране ядра.

Обмен веществ

Взаимодействие ядра и цитоплазмы осуществляется через Они представляют собой довольно сложные структуры, образованные 30 белками. Количество пор на одном ядре может быть разным. Он зависит от типа клетки, органа и организма. Так, у человека клеточное ядро может иметь от 3 до 5 тысяч пор, у некоторых лягушек оно доходит до 50 000.

Главная функция пор — обмен веществ между ядром и остальным пространством клетки. Некоторые молекулы проникают сквозь поры пассивно, без дополнительных затрат энергии. Они обладают небольшими размерами. Транспортировка крупных молекул и надмолекулярных комплексов требует расхода определенного количества энергии.

Из кариоплазмы в клетку попадают синтезируемые в ядре молекулы РНК. В обратном направлении транспортируются белки, необходимые для внутриядерных процессов.

Нуклеоплазма

Строение ядерного сока меняется в зависимости от состояния клетки. Их два — стационарное и возникающее в период деления. Первое характерно для интерфазы (время между делениями). При этом ядерный сок отличается равномерным распределением нуклеиновых кислот и неструктурированными молекулами ДНК. В этот период наследственный материал существует в виде хроматина. Деление клеточного ядра сопровождается преобразованием хроматина в хромосомы. В это время изменяется строение кариоплазмы: генетический материал приобретает определенную структуру, ядерная оболочка разрушается, и кариоплазма смешивается с цитоплазмой.

Хромосомы

Основные функции нуклеопротеидных структур преобразованного на время деления хроматина — хранение, реализация и передача наследственной информации, которую содержит клеточное ядро. Хромосомы характеризуются определенной формой: делятся на части или плечи первичной перетяжкой, также называемой целомерой. По ее расположению выделяют три типа хромосом:

  • палочкообразные или акроцентрические: для них характерно размещение целомеры практически на конце, одно плечо получается очень маленьким;
  • разноплечие или субметацентрические обладают плечами неравной длины;
  • равноплечие или метацентрические.

Набор хромосом в клетке называется кариотипом. У каждого вида он фиксирован. При этом разные клетки одного организма могут содержать диплоидный (двойной) или гаплоидный (одинарный) набор. Первый вариант характерен для соматических клеток, в основном составляющих тело. Гаплоидный набор — привилегия половых клеток. Соматические клетки человека содержат 46 хромосом, половые — 23.

Хромосомы диплоидного набора составляют пары. Одинаковые нуклеопротеидные структуры, входящие в пару, называются аллельными. Они имеют одинаковое строение и выполняют одни и те же функции.

Структурной единицей хромосом является ген. Он представляет собой участок молекулы ДНК, кодирующий определенный белок.

Ядрышко

Клеточное ядро обладает еще одним органоидом — это ядрышко. Оно не отделяется от кариоплазмы мембраной, но при этом его легко заметить во время изучения клетки с помощью микроскопа. Некоторые ядра могут иметь несколько ядрышек. Существуют и такие, в которых подобные органоиды отсутствуют совсем.

По форме ядрышко напоминает сферу, имеет достаточно небольшие размеры. В его состав входят различные белки. Основная функция ядрышка — синтез рибосомных РНК и самих рибосом. Они необходимы для создания полипептидных цепей. Ядрышки образуются вокруг специальных участков генома. Они получили название ядрышковых организаторов. Здесь содержатся гены рибосомной РНК. Ядрышко, кроме прочего, является местом с наибольшей концентрацией белка в клетке. Часть белков необходима для выполнения функций органоида.

В составе ядрышка выделяют два компонента: гранулярный и фибриллярный. Первый представляет собой созревающие субъединицы рибосом. В фибриллярном центре осуществляется Гранулярный компонент окружает фибриллярный, расположенный в центре ядрышка.

Клеточное ядро и его функции

Роль, которую играет ядро, неразрывно связана с его строением. Внутренние структуры органоида совместно реализуют важнейшие процессы в клетке. Здесь размещается генетическая информация, которая определяет строение и функции клетки. Ядро отвечает за хранение и передачу наследственной информации, осуществляющееся во время митоза и мейоза. В первом случае дочерняя клетка получает идентичный материнскому набор генов. В результате мейоза образуются половые клетки с гаплоидным набором хромосом.

Другая не менее важная функция ядра — регуляция внутриклеточных процессов. Она осуществляется в результате контроля синтеза белков, отвечающих за строение и функционирование клеточных элементов.

Влияние на белковый синтез имеет еще одно выражение. Ядро, контролируя процессы внутри клетки, объединяет все ее органоиды в единую систему с отлаженным механизмом работы. Сбои в нем приводят, как правило, к гибели клетки.

Наконец, ядро является местом синтеза субъединиц рибосом, которые отвечают за образование все того же белка из аминокислот. Рибосомы незаменимы в процессе транскрипции.

Представляет собой более совершенную структуру, чем прокариотическая. Появление органоидов с собственной мембраной позволило повысить эффективность внутриклеточных процессов. Формирование ядра, окруженного двойной липидной оболочкой, играло в этой эволюции очень важную роль. Защита наследственной информации мембраной позволила освоить древним одноклеточным организмам новые способы жизнедеятельности. Среди них был фагоцитоз, который по одной из версий привел к появлению симбиотического организма, позже ставшего прародителем современной эукариотической клетки со всеми характерными для нее органоидами. Клеточное ядро, строение и функции некоторых новых структур позволили задействовать кислород в метаболизме. Следствием этого стало кардинальное изменение в биосфере Земли, была заложена основа для формирования и развития многоклеточных организмов. Сегодня эукариотические организмы, к которым относится и человек, доминируют на планете, и ничто не предвещает изменений в этом плане.

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...