Что такое пары воды. Водяной пар

При слове "пар", я вспоминаю времена, когда ещё учился в начальных классах. Тогда, приходя из школы домой, родители начинали готовить обед, и ставили кастрюлю с водой на газовую плиту. И уже через десять минут, в кастрюльке начинали появляться первые пузырьки. Этот процесс всегда меня завораживал, мне казалось, что я могу смотреть на это вечно. А потом, через некоторое время после появления пузырьков, начинал идти сам пар. Однажды, я спросил маму: "А откуда идут эти белые тучки?" (Так раньше я их называл). На что она мне отвечала: "Это всё происходит из-за нагрева воды". Хотя ответ и не давал полного представления о процессе возникновения пара, на уроках школьной физики я узнал о паре всё, что хотел. Итак...

Что же есть водяной пар

С научной точки зрения, водяной пар - просто одно из трёх физических состояний самой воды . Он, как известно, возникает при нагревании воды. Как и она сама, пар не имеет ни цвета, ни вкуса, ни запаха. Но не все знают, что клубы пара обладают своим давлением, которое зависит от его объёма. А выражается оно в паскалях (в честь небезызвестного учёного).

Водяной пар окружает нас не только, когда мы варим что-нибудь на кухне. Он постоянно содержится в уличном воздухе и атмосфере. И его процент содержания называется "абсолютной влажностью".


Факты о водяном паре и его особенности

Итак, несколько интересных моментов:

  • чем выше температура , которая действует на воду, тем быстрее идёт процесс испарения;
  • помимо этого, скорость испарения увеличивается с размерами площади поверхности, на которой эта вода находится. Другими словами, если мы начнём нагревать небольшой водный слой на широкой металлической чашке, то испарение пройдет весьма быстро;
  • для жизни растений нужна не только жидкая вода, но и газообразная . Объяснить этот факт можно тем, что с листьев любого растения постоянно идут испарения, охлаждающие его. Попробуйте в знойный день потрогать лист дерева – и вы заметите, что он прохладный;
  • то же самое касается человека, с нами работает та же система, что и с растениями выше. Испарения охлаждают нашу кожу в жаркий день . Удивительно, но даже при небольших нагрузках, наш организм покидает около двух литров жидкости в час. Что уж тут говорить про усиленные нагрузки и знойные летние деньки?

Вот таким образом можно описать сущность пара и его роль в нашем мире. Надеюсь, вы открыли для себя много интересного!

ВОДЯНОЙ ПАР В АТМОСФЕРЕ

ВЛАЖНОСТЬ ВОЗДУХА. ХАРАКТЕРИСТИКИ СОДЕРЖАНИЯ ВОДЯНОГО ПАРА В АТМОСФЕРЕ

Влажностью воздуха называют содержание водяного пара в атмосфере. Водяной пар является одной из важнейших состав­ных частей земной атмосферы.

Водяной пар непрерывно поступает в атмосферу вследствие испарения воды с поверхности водоемов , почвы, снега, льда и растительного покрова, на что затрачивается в среднем 23 % солнечной радиации, приходящей на земную поверхность.

В атмосфере содержится в среднем 1,29 1013 т влаги (водяно­го пара и жидкой воды), что эквивалентно слою воды 25,5 мм.

Влажность воздуха характеризуется следующими величинами: абсолютной влажностью , парциальным давлением водяного пара, давлением насыщенного пара, относительной влажнос­тью, дефицитом насыщения водяного пара, температурой точки росы и удельной влажностью.

Абсолютная влажность а (г/м3) - количество водяного пара, выраженное в граммах, содержащееся в 1 м3 воздуха.

Парциальное давление (упругость) водяного пара е - фактичес­кое давление водяного пара, находящегося в воздухе, измеряют в миллиметрах ртутного столба (мм рт. ст.), миллибарах (мб) и гектопаскалях (гПа). Упругость водяного пара часто называют абсолютной влажностью. Однако смешивать эти разные понятия нельзя, так как они отражают разные физические величины ат­мосферного воздуха.

Давление насыщенного водяного пара, или упругость насыщения, Е- максимально возможное значение парциального давления при данной температуре; измеряют в тех же единицах, что и е. Упру­гость насыщения возрастает с увеличением температуры. Это зна­чит, что при более высокой температуре воздух способен содер­жать больше водяного пара, чем при более низкой температуре.

Относительная влажность f - это отношение парциального давления водяного пара, содержащегося в воздухе, к давлению насыщенного водяного пара при данной температуре. Выража­ют ее обычно в процентах с точностью до целых:

Относительная влажность выражает степень насыщения воз­духа водяными парами.

Дефицит насыщения водяного пара (недостаток насыщения) d - разность между упругостью насыщения и фактической упругос­тью водяного пара:

= E - e .

Дефицит насыщения выражают в тех же единицах и с той же точностью, что и величины е и Е. При увеличении относитель­ной влажности дефицит насыщения уменьшается и при/= 100 % становится равным нулю.

Так как Е зависит от температуры воздуха, а е - от содержа­ния в нем водяного пара, то дефицит насыщения является комп­лексной величиной, отражающей тепло - и влагосодержание воз­духа. Это позволяет шире, чем другие характеристики влажнос­ти, использовать дефицит насыщения для оценки условий про­израстания сельскохозяйственных растений.

Точка росы td (°С) - температура, при которой водяной пар, со­держащийся в воздухе при данном давлении, достигает состояния насыщения относительно химически чистой плоской поверхности воды. При/= 100 % фактическая температура воздуха совпадает с точкой росы. При температуре ниже точки росы начинается кон­денсация водяных паров с образованием туманов, облаков, а на поверхности земли и предметов образуются роса, иней, изморозь.

Удельная влажность q (г/кг) - количество водяного пара в граммах, содержащееся в 1 кг влажного воздуха:

q = 622 е/Р,

где е - упругость водяного пара, гПа; Р- атмосферное давление, гПа.

Удельную влажность учитывают в зоометеорологических рас­четах, например, при определении испарения с поверхности ор­ганов дыхания у сельскохозяйственных животных и при опреде­лении соответствующих затрат энергии.

ИЗМЕНЕНИЕ ХАРАКТЕРИСТИК ВЛАЖНОСТИ ВОЗДУХА В АТМОСФЕРЕ С ВЫСОТОЙ

Наибольшее количество водяного пара содержится в нижних слоях воздуха, непосредственно прилегающих к испаряющей поверхности. В вышележащие слои водяной пар проникает в ре­зультате турбулентной диффузии

Проникновению водяного пара в вышележащие слои способ­ствует то обстоятельство, что он легче воздуха в 1,6 раза (плот­ность водяного пара по отношению к сухому воздуху при 0 "С равна 0,622), поэтому воздух, обогащенный водяным паром, как менее плотный стремится подняться вверх.

Распределение упругости водяного пара по вертикали зависит от изменения давления и температуры с высотой, от процессов конденсации и облакообразования. Поэтому трудно теоретичес­ки установить точную закономерность изменения упругости во­дяного пара с высотой.

Парциальное давление водяного пара с высотой уменьшается в 4...5 раз быстрее, чем атмосферное давление. Уже на высоте 6 км парциальное давление водяного пара в 9раз меньше, чем на уровне моря. Это объясняется тем, что в приземный слой атмосферы водяной пар поступает непрерывно в результате ис­парения с деятельной поверхности и его диффузии за счет тур­булентности. Кроме того, температура воздуха с высотой пони­жается, а возможное содержание водяного пара ограничивается температурой, так как понижение ее способствует насыщению пара и его конденсации.

Уменьшение упругости пара с высотой может чередоваться с ее ростом. Например, в слое инверсии упругость пара обычно растет с высотой.

Относительная влажность распределяется по вертикали не­равномерно, но с высотой в среднем она уменьшается. В при­земном слое атмосферы в летние дни она несколько возрастает с высотой за счет быстрого понижения температуры воздуха, за­тем начинает убывать вследствие уменьшения поступления во­дяного пара и снова возрастает до 100 % в слое образования об­лаков. В слоях инверсии она резко уменьшается с высотой в ре­зультате повышения температуры. Особенно неравномерно из­меняется относительная влажность до высоты 2...3 км.

СУТОЧНЫЙ И ГОДОВОЙ ХОД ВЛАЖНОСТИ ВОЗДУХА

В приземном слое атмосферы наблюдается хорошо выражен­ный суточный и годовой ход влагосодержания, связанный с со­ответствующими периодическими изменениями температуры.

Суточный ход упругости водяного пара и абсолютной влажности над океанами, морями и в прибрежных районах суши аналогичен суточному ходу температуры воды и воздуха: минимум перед вос­ходом Солнца и максимум в 14...15 ч. Минимум обусловлен очень слабым испарением (или его отсутствием вообще) в это время су­ток. Днем по мере увеличения температуры и соответственно ис­парения влагосодержание в воздухе растет. Таков же суточный ход упругости водяного пара и над материками зимой.

В теплое время года в глубине материков суточный ход влаго-содержания имеет вид двойной волны (рис. 5.1). Первый мини­мум наступает рано утром вместе с минимумом температуры. После восхода Солнца температура деятельной поверхности по­вышается, увеличивается скорость испарения, и количество во­дяного пара в нижнем слое атмосферы быстро растет. Такой рост продолжается до 8...10 ч, пока испарение преобладает над переносом пара снизу в более высокие слои. После 8...10ч воз­растает интенсивность турбулентного перемешивания, в связи с чем водяной пар быстро переносится вверх. Этот отток водяного пара уже не успевает компенсироваться испарением, в результа­те чего влагосодержание и, следовательно, упругость водяного пара в приземном слое уменьшаются и достигают второго мини­мума в 15...16 ч. В предвечерние часы турбулентность ослабева­ет, тогда как довольно интенсивное поступление водяного пара в атмосферу путем испарения еще продолжается. Упругость пара и абсолютная влажность в воздухе начинают увеличиваться и в 20...22ч достигают второго максимума. В ночные часы испаре­ние почти прекращается, в результате чего содержание водяного пара уменьшается.

Годовой ход упругости водяного пара и абсолютной влажности совпадают с годовым ходом температуры воздуха как над океа­ном, так и над сушей. В Северном полушарии максимум влаго-содержания воздуха наблюдается в июле, минимум - в январе. Например, в Санкт-Петербурге средняя месячная упругость пара в июле составляет 14,3 гПа, а в январе - 3,3 гПа.

Суточный ход относительной влажности зависит от упруго­сти пара и упругости насыщения. С повышением температуры испаряющей поверхности увеличивается скорость испарения и, следовательно, увеличивается е. Но Е растет значительно быстрее, чем е, поэтому с повышением температуры поверх­ности, а с ней и температуры воздуха относительная влаж­ность уменьшается [см. формулу (5.1)]. В итоге ход ее вблизи земной поверхности оказывается обратным ходу температуры поверхности и воздуха: максимум относительной влажности наступает перед восходом Солнца, а минимум - в 15ч (рис. 5.2). Дневное ее понижение особенно резко выражено над континентами в летнее время, когда в результате турбу­лентной диффузии пара вверх е у поверхности уменьшается, а вследствие роста температуры воздуха Е увеличивается. По­этому амплитуда суточных колебаний относительной влажно­сти на материках значительно больше, чем над водными по­верхностями.

В годовом ходе относительная влажность воздуха, как правило, также меняется обратно ходу температуры. Например, в Санкт-Петербурге относительная влажность в мае в среднем составляет 65 %, а в декабре - 88 % (рис. 5.3). В районах с муссонным кли­матом минимум относительной влажности приходится на зиму, а максимум - на лето вследствие летнего переноса на сушу масс влажного морского воздуха: например, во Владивостоке летом /= 89%, зимой/= 68 %.

Ход дефицита насыщения водяного пара параллелен ходу температуры воздуха. В течение суток дефицит бывает наи­большим в 14...15 ч, а наименьшим - перед восходом Солнца. В течение года дефицит насыщения водяного пара имеет мак­симум в самый жаркий месяц и минимум в самый холодный. В засушливых степных районах России летом в 13 ч ежегодно отмечается дефицит насыщения, превышающий 40 гПа. В Санкт-Петербурге дефицит насыщения водяного пара в июне в среднем составляет 6,7 гПа, а в январе - только 0,5 гПа

ВЛАЖНОСТЬ ВОЗДУХА В РАСТИТЕЛЬНОМ ПОКРОВЕ

Растительный покров оказывает большое влияние на влаж­ность воздуха. Растения испаряют большое количество воды и тем самым обогащают водяным паром приземный слой атмос­феры, в нем наблюдается повышенное влагосодержание воздуха по сравнению с оголенной поверхностью. Этому способствует еще и уменьшение растительным покровом скорости ветра, а следовательно, и турбулентной диффузии пара. Особенно резко это выражено в дневные часы. Упругость пара внутри крон дере­вьев в ясные летние дни может быть на 2...4 гПа больше, чем на открытом месте, в отдельных случаях даже на 6...8 гПа. Внутри агрофитоценозов возможно повышение упругости пара по срав­нению с паровым полем на 6...11 гПа. В вечерние и ночные часы влияние растительности на влагосодержание меньше.

Большое влияние растительный покров оказывает и на отно­сительную влажность. Так, в ясные летние дни внутри посевов ржи и пшеницы относительная влажность на 15...30 % больше, чем над открытым местом, а в посевах высокостебельных куль­тур (кукуруза, подсолнечник, конопля) - на 20...30 % больше, чем над оголенной почвой. В посевах наибольшая относитель­ная влажность наблюдается у поверхности почвы, затененной растениями, а наименьшая - в верхнем ярусе листьев (табл. 5.1).. Распределение по вертикали относительной влажности и дефицита насыщения

Дефицит насыщения водяного пара соответственно в посевах значительно меньше, чем над оголенной почвой. Его распреде­ление характеризуется понижением от верхнего яруса листьев к нижнему (см. табл. 5.1).

Ранее отмечалось, что растительный покров значительно влияет на радиационный режим (см. гл. 2), температуру почвы и воздуха (см. гл. 3 и 4), существенно изменяя их по сравнению с открытым местом, т. е. в растительном сообществе формируется свой, особый метеорологический режим - фитоклимат. На­сколько сильно он выражен, зависит от вида, габитуса и возрас­та растений, густоты насаждения, способа посева (посадки).

Влияют на фитоклимат и погодные условия - в малооблачную и ясную погоду фитоклиматические особенности проявляются сильнее.

ЗНАЧЕНИЕ ВЛАЖНОСТИ ВОЗДУХА ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА

Водяной пар, содержащийся в атмосфере, имеет, как отмеча­лось в главе 2, большое значение в сохранении тепла на земной поверхности, так как он поглощает излучаемое ею тепло. Влаж­ность воздуха относится к числу элементов погоды, имеющих су­щественное значение и для сельскохозяйственного производства.

Влажность воздуха оказывает большое влияние на растение. Она в значительной степени обусловливает интенсивность транспирации. При высокой температуре и пониженной влаж­ности (/"< 30 %) транспирация резко увеличивается и у растений возникает большой недостаток воды, что отражается на их росте и развитии. Например, отмечается недоразвитие генеративных органов, задерживается цветение.

Низкая влажность в период цветения обусловливает пересы­хание пыльцы и, следовательно, неполное оплодотворение, что у зерновых, например, вызывает череззерницу. В период налива зерна чрезмерная сухость воздуха приводит к тому, что зерно получается щуплым, урожай снижается.

Малое влагосодержание воздуха приводит к мелкоплодности плодовых, ягодных культур, винограда , слабой закладке почек под урожай будущего года и, следовательно, снижению урожая.

Влажность воздуха отражается и на качестве урожая. Отмече­но, что низкая влажность снижает качество льноволокна, но по­вышает хлебопекарные качества пшеницы, технические свой­ства льняного масла, содержание сахара в плодах и т. д.

Особенно неблагоприятно снижение относительной влажно­сти воздуха при недостатке почвенной влаги. Если жаркая и су­хая погода длится продолжительное время, то растения могут за­сохнуть.

Отрицательно сказывается на росте и развитии растений и длительное повышение влагосодержания (/> 80 %). Избыточно высокая влажность воздуха обусловливает крупноклеточное строение ткани растений, что приводит в дальнейшем к полега­нию зерновых культур. В период цветения такая влажность воз­духа препятствует нормальному опылению растений и снижает урожай, так как меньше раскрываются пыльники, уменьшается лёт насекомых.

Повышенная влажность воздуха задерживает наступление полной спелости зерна, увеличивает содержание влаги в зерне и соломе, что, во-первых, неблагоприятно отражается на работе уборочных машин, а во-вторых, требует дополнительных затрат на просушку зерна (табл. 5.2).

Снижение дефицита насыщения до 3 гПа и более приводит практически к прекращению уборочных работ из-за плохих ус­ловий.

В теплое время года повышенная влажность воздуха способ­ствует развитию и распространению ряда грибных заболеваний сельскохозяйственных культур (фитофтороз картофеля и тома­тов, милдью винограда, белая гниль подсолнечника, различные виды ржавчины зерновых культур и др.). Особенно усиливается влияние этого фактора с увеличением температуры (табл. 5.3).

5.3. Число растений яровой пшеницы Цезиум 111, пораженных головней в зависимости от влажности и температуры воздуха (по, От влажности воздуха зависят и сроки проведения ряда сель­скохозяйственных работ: борьбы с сорняками, закладки кормов на силос, проветривания складских помещений, сушки зерна и ДР-

В тепловом балансе сельскохозяйственных животных и чело­века с влажностью воздуха связан теплообмен. При температуре воздуха ниже 10 "С повышенная влажность усиливает теплоотда­чу организмов, а при высокой температуре - замедляет.

ВОДЯНОЙ ПАР . Паром называется газообразное тело, получающееся из жидкости при соответствующих температуре и давлении. Все газы м. б. обращены в жидкое состояние, и поэтому трудно провести границу между газами и парами. В технике паром считают газообразное тело, состояние которого недалеко от обращения в жидкость. Т. к. в свойствах газов и паров имеются значительные различия, то это различие терминов вполне целесообразно. Водяные пары являются важнейшими из паров, применяемых в технике. Они употребляются, как рабочее тело, в паровых двигателях (паровых машинах и паровых турбинах) и для целей нагревания и отопления. Свойства пара чрезвычайно различны, смотря по тому, находится ли пар в смеси с той жидкостью, из которой получается, или он отделен от нее. В первом случае пар называется насыщенным, во втором случае - перегретым . В технике первоначально применялся почти исключительно насыщенный пар, в настоящее время в паровых двигателях находит самое широкое применение перегретый пар, свойства которого поэтому тщательно изучаются.

I. Насыщенный пар . Процесс испарения лучше уясняется графическими изображениями, например, диаграммой в координатах р, v (удельное давление в кг/см 2 и удельный объем в м 3 /кг). На фиг. 1 изображен схематически процесс испарения для 1 кг воды. Точка а 2 изображает состояние 1 кг воды при 0° и давлении р 2 , причем абсцисса этой точки изображает объем этого количества, ордината - давление, под которым находится вода.

Кривая а 2 аа 1 показывает изменение объема 1 кг воды при повышении давления. Давления в точках а 2 , а, а 1 соответственно равны р 2 , р, р 1 кг 1см 2 . Фактически это изменение чрезвычайно мало, и в технических вопросах можно считать удельный объем воды не зависящим от давления (т. е. линию а 2 аа 1 можно принимать за прямую, параллельную оси ординат). Если нагревать взятое количество воды, сохраняя давление постоянным, то температура воды повышается, и при некоторой величине ее начинается испарение воды. При нагревании воды удельный объем ее, теоретически говоря, несколько увеличивается (по крайней мере, начиная с 4°, т. е. от температуры наибольшей плотности воды). Поэтому точки начала испарения при разных давлениях (р 2 , р, р 1) будут лежать на некоторой другой кривой b 2 bb 1 . Фактически это увеличение объема воды при повышении температуры незначительно, и потому при невысоких давлениях и температурах можно принимать удельный объем воды за постоянную величину. Удельные объемы воды в точках b 2 , b, b 1 обозначаются соответственно через v" 2 , v", v" 1 ; кривая b 2 bb 1 называется нижней предельной кривой. Температура, при которой начинается испарение, определяется тем давлением, под которым находится нагреваемая вода. За все время испарения эта температура не изменяется, если давление остается постоянным. Отсюда следует, что температура насыщенного пара есть функция только давления р. Рассматривая какую-либо линию, изображающую процесс испарения, например bcd, видим, что объем смеси пара и жидкости в процессе испарения возрастает по мере увеличения количества испарившейся воды. В некоторой точке d вся вода исчезает, и получается чистый пар; точки d для разных давлений образуют некоторую кривую d 1 dd 2 , которая называется верхней предельной кривой , или кривой сухого насыщенного пара ; пар в этом состоянии (когда только что закончилось испарение воды) называется сухим насыщенным паром . Если продолжать нагревание после точки d (по направлению к некоторой точке е), оставляя давление постоянным, то температура пара начинает повышаться. В этом состоянии пар называется перегретым. Таким образом получаются три области: правее линии d 1 dd 2 - область перегретого пара, между линиями b 1 bb 2 и d 1 dd 2 - область насыщенного пара и левее линии b 1 bb 2 - область воды в жидком состоянии. В какой-либо промежуточной точке с имеется смесь пара и воды.

Для характеристики состояния этой смеси служит количество х содержащегося в ней пара; при весе смеси в 1 кг (равном весу взятой воды) эта величина х называется пропорцией пара в смеси , или паросодержанием смеси ; количество воды в смеси будет равно (1-x) кг. Если v" м 3 /кг - удельный объем сухого насыщенного пара при температуре t и давлении р кг/см 2 , а объем воды при тех же условиях v", то объем смеси v найдется по формуле:

Объемы v" и v", а следовательно, и их разность v"-v" суть функции давления р (или температуры t). Вид функции, определяющей зависимость р от t для водяного пара, очень сложен; существует много эмпирических выражений для этой зависимости, которые все, однако, годятся лишь для некоторых ограниченных интервалов независимой переменной t. Реньо для температур от 20 до 230° дает формулу:

В настоящее время часто пользуются формулой Дюпре-Герца (Dupre-Hertz):

где k, m и n - постоянные.

Шюле дает эту формулу в следующем виде:

причем для температуры:

а) между 20 и 100°

(р - в кг/см 2 , Т - абсолютная температура пара);

б) между 100 и 200°

в) между 200 и 350°

Характер кривой давления р пара как функции температуры виден на фиг. 2.

В практике пользуются непосредственно таблицами, дающими связь между р и t. Таблицы эти составляются на основании точных опытов. Для нахождения удельных объемов сухого насыщенного пара имеется теоретически выводимая формула Клапейрон-Клаузиуса. Можно пользоваться также эмпирической формулой Молье:

Количество тепла q, необходимое для нагревания 1 кг воды от 0 до t° (начала испарения), выражается так:

где с - теплоемкость воды, в широких пределах мало отличающаяся от единицы; поэтому пользуются приближенной формулой:

Однако уже Реньо убедился в заметном возрастании с при высоких температурах и дал для q выражение:

В новейшее время для с даются такие данные (формула Дитеричи):

Для средней теплоемкости с m в интервале от 0 до t° дано выражение:

Несколько отклоняются от этой формулы данные опытов германского физико-технического института, наблюдения которого дают следующие значения с:

Для обращения в пар воды, нагретой до температуры, нужно еще затратить некоторое количество тепла r, которое называется скрытой теплотой испарения .

В настоящее время эту затрату теплоты разделяют на 2 части: 1) теплоту Ψ, идущую на внешнюю работу увеличения объема при переходе воды в пар (внешнюю скрытую теплоту испарения), и 2) теплоту ϱ, идущую на внутреннюю работу разъединения молекул, происходящую при испарении воды (внутреннюю скрытую теплоту испарения). Внешняя скрытая теплота испарения

где А = 1/427 - тепловой эквивалент механической работы.

Таким образом

Для r дается следующая формула (основанная на опытах германского физико-технического института):

Полная теплота испарения λ, т. е. количество тепла, необходимое для обращения воды, взятой при 0°, в пар при температуре t, равна, очевидно, q+r. Реньо дал для λ следующую формулу:

эта формула дает результаты, близкие к новейшим опытным данным. Шюле дает:

Внутренняя энергия u воды при 0° принимается равной нулю. Для нахождения приращения ее при нагревании воды нужно выяснить характер изменения удельного объема воды при изменении давления и температуры, т. е. вид кривых а 2 аа 1 и b 2 bb 1 (фиг. 1). Простейшим предположением будет принятие этих линий за прямые, и притом совпадающие друг с другом, т. е. принятие удельного объема воды v" за постоянную величину, не зависящую ни от давления, ни от температуры (v" = 0,001 м 3 /кг). При этом предположении вся теплота, идущая на нагревание жидкости, т. е. q, идет на повышение внутренней энергии (так как внешней работы при этом нагревании не совершается). Это предположение годится, однако, только для сравнительно невысоких давлений (таблицы Цейнера даны до давлений в 20 кг/см 2). Современные таблицы (Молье и др.), доходящие до критического давления (225 кг/см 2) и температуры (374°) не могут, конечно, игнорировать изменения объема воды (удельный объем воды при критическом давлении и критической температуре равен 0,0031 м 2 /кг, т. е. в три с лишним раза больше, чем при 0°). Но Стодола и Кноблаух показали, что приведенная у нас выше формула Дитеричи для величины q дает именно величины изменения внутренней энергии (а не величины q); впрочем, разница между этими величинами до давления в 80 кг/см 2 незначительна. Поэтому полагаем для воды внутреннюю энергию равной теплоте жидкости: u" = q. За период испарения внутренняя энергия повышается на величину внутренней скрытой теплоты испарения ϱ, т. е. энергия сухого насыщенного пара будет: (фиг. 3).

Для смеси с пропорцией пара х получим следующее выражение:

Зависимость теплоты испарения и давления от температуры графически дана на фиг. 3.

Молье ввел в техническую термодинамику термодинамическую функцию i, определяемую уравнением и называемую теплосодержанием . Для смеси с пропорцией пара х это даст:

или, после приведения:

для воды (x = 0) получается:

для сухого насыщенного пара:

Величина произведения APv" очень мала по сравнению даже с величиной q (и тем более по сравнению с величиною q + r = λ); поэтому можно принять

В таблицах Молье даются поэтому не величины q и λ, а величины i" и i" в функции р или t°. Энтропия насыщенного пара находится по своему дифференциалу выражение dQ для всех тел имеет вид:

Для насыщенного водяного пара

Первый член представляет собой приращение энтропии воды при ее нагревании, второй член - приращение энтропии смеси во время испарения. Полагая

получим или, интегрируя:

Заметим, что при вычислении s" изменением удельного объема v" обыкновенно тоже пренебрегают и полагают Для решения всех вопросов, касающихся насыщенных паров, пользуются таблицами. В прежнее время в технике находили применение таблицы Цейнера, в настоящее время они являются устарелыми; можно пользоваться таблицами Шюле, Кноблауха или Молье.

Во всех этих таблицах давления и температуры доведены до критического состояния. В таблицы включены следующие данные: температура и давление насыщенного пара, удельный объем воды и пара и удельный вес пара, энтропия жидкости и пара, теплосодержание воды и пара, полная скрытая теплота испарения, внутренняя энергия, внутренняя и внешняя скрытая теплота. Для некоторых вопросов (касающихся, например, конденсаторов) составляются специальные таблицы с малыми интервалами давлений или температуры.

Из всех изменений пара особенный интерес представляет адиабатическое изменение; оно м. б. изучено по точкам. Пусть дана (фиг. 4) начальная точка 1 адиабаты, определяемая давлением р 1 и пропорцией пара x 1 ; требуется определить состояние пара в точке 2, лежащей на адиабате, проходящей через точку 1 и определяемой давлением р 2 . Для нахождения х 2 выражают условие равенства энтропий в точках 1 и 2:

В этом уравнении величины s" 1 , r 1 /T 1 , s" 2 и r 2 /T 2 находятся по данным давлениям р 1 и р 2 , пропорция пара х 1 задана, и неизвестен только х 2 . Удельный объем v -2 в точке 2 определится по формуле:

Величины v"" 2 и v" 2 находятся из таблиц. Внешняя работа рассматриваемого адиабатического изменения находится по разности внутренних энергий вначале и конце изменения:

Для упрощения вычислений часто пользуются при изучении адиабатического изменения эмпирическим уравнением Цейнера, который выражает адиабату как политропу:

Показатель степени μ выражается через начальную пропорцию пара х 1 так:

Формула эта применима в пределах от x 1 = 0,7 до x 1 = 1. Адиабатическое расширение при начальной высокой пропорции пара, выше 0,5, сопровождается обращением части пара в воду (уменьшением x); при начальных пропорциях пара, меньших 0,5, адиабатическое расширение сопровождается, наоборот, испарением части воды. Формулы для остальных случаев изменения насыщенного пара находятся во всех учебниках технической термодинамики.

II. Перегретый пар . Внимание к перегретому пару привлечено было еще в 60-х годах прошлого столетия в результате опытов Гирна, показавших значительную выгоду при применении перегретого пара в паровых машинах. Но особенного распространения перегретый пар достиг после создания В. Шмитом особых конструкций перегревателей специально для получения пара высокого перегрева (300-350°). Эти перегреватели нашли широкое приложение сначала (1894-95 гг.) в стационарных паровых машинах, затем в паровозных машинах и в 20 веке - в паровых турбинах. В настоящее время почти ни одна установка не обходится без применения перегретого пара, причем перегрев доводится до 400-420°. Для возможности рационального применения столь высокого перегрева самые свойства перегретого пара были тщательно изучены. Первоначальная теория перегретого пара дана была Цейнером; она опиралась на немногочисленные опыты Реньо. Ее основные положения: 1) особый вид уравнения состояния, отличающегося от уравнения для идеальных газов добавочным членом, который является функцией только давления; 2) принятие для теплоемкости с р при постоянном давлении постоянного значения: с р = 0,48. Оба эти предположения не подтвердились в опытах над свойствами перегретого пара, произведенных в более широких пределах. Особое значение получили обширные опыты Мюнхенской лаборатории технической физики, начатые около 1900 г. и продолжающиеся и в настоящее время. Новая теория перегретого пара была дана в 1900-1903 гг. Каллендером в Англии и Молье в Германии, но и она не явилась окончательной, так как выражение для теплоемкости при постоянном давлении, получаемое из этой теории, не вполне согласуется с новейшими опытными данными. Поэтому появился целый ряд новых попыток построения уравнения состояния для перегретого пара, которое бы более согласовалось с результатами опытов.

Из этих попыток известность получило уравнение Эйхельберга. Окончательное завершение эти попытки нашли в новой теории Молье (1925-1927 гг.), поведшей к составлению его последних таблиц. Молье принимает очень выдержанную систему обозначений, которой мы отчасти пользовались выше. Обозначения Молье: Р - давление в кг/м 2 абс., р - давление в кг/см 2 абс., v - удельный объем в м 3 /кг, γ = 1/v удельный вес в кг/м 3 , t - температура от 0°, Т = t° + 273° - абсолютная температура, А = 1/427 - тепловой эквивалент механической работы, R = 47,1 - газовая постоянная (для паров воды), s - энтропия, i - теплосодержание в Cal/кг, u = i–APv - внутренняя энергия в Cal/кг, ϕ = s – i/T, с р - теплоемкость при постоянном давлении, c ii p = 0,47 – предельная величина c p при p = 0.

Значки " и " относятся собственно к воде и к сухому насыщенному пару. Из уравнения Молье

при помощи формул, вытекающих из I и II закона термодинамики, получаются все важнейшие величины, характеризующие перегретый пар, т. е, s, i, u и с р. Молье вводит следующие вспомогательные функции температуры:

При помощи этих функций получаются следующие выражения:

Формулы для нахождения удельного объема и прочих величин для перегретого пара довольно сложны и неудобны для вычислений. Поэтому новейшие таблицы Молье заключают в себе вычисленные значения важнейших величин, характеризующих перегретый пар в функции от давления и температуры. При помощи таблиц Молье довольно просто и с достаточной точностью решаются все задачи, касающиеся перегретого пара. Надо еще заметить, что для адиабатического изменения перегретого пара в известных пределах (до 20-25 кг/см 3) сохраняет свое значение уравнение политропического вида: pv 1,3 = Const. Наконец, многие вопросы, касающиеся перегретого пара, м. б. решены при помощи графических приемов, особенно при помощи диаграммы IS Молье. На этой диаграмме помещены кривые постоянных давлений, постоянных температур и постоянных объемов. Т. о. можно прямо из диаграммы получать значения v, s, i в функции давления и температуры. Адиабаты изображаются на этой диаграмме прямыми линиями, параллельными оси ординат. Особенно просто находятся разности величин теплосодержания, соответствующие началу и концу адиабатического расширения; эти разности необходимы для нахождения скоростей истечения пара.

Ты, конечно, замечал, если выйти из речки и не обтираться полотенцем, то через некоторое время твоя кожа станет сухой.

Это говорит о том, что вода с поверхности твоего тела испарилась. Процесс испарения представляет собой переход жидкого состояния воды в парообразное. Ты можешь наблюдать это явление в природе повсеместно.

Испарение постоянно происходит с поверхностного слоя морей и океанов, влажных предметов (например, когда ты протираешь школьную доску мокрой тряпкой).

Для всех живых существ и растений тоже свойственен процесс испарения. Благодаря этому явлению живые организмы способны регулировать температуру своего тела. Ты, наверняка, замечал, что вода с поверхности тела испаряется быстрее, если на улице ветрено или ярко светит солнышко.

Действительно, при повышении температуры и наличии ветра испарение происходит интенсивней, поэтому летом лужи высыхают быстрее, чем осенью. Зимой этот процесс и вовсе замедляется, но не останавливается. Даже мокрое белье, вывешенное на улицу и покрытое коркой льда, все равно станет сухим. Процесс испарения даже при таких условиях все равно продолжается. При температуре +100°С жидкое состояние воды благодаря кипению переходит в парообразное. В этот момент наблюдается самый активный процесс испарения.

Образовавшийся пар с поверхности земли начинает подниматься. Ты ведь знаешь, что теплый воздух гораздо легче холодного, поэтому он и начинает подниматься, устремляясь ввысь. Но с увеличением высоты температура воздуха резко начинает снижаться, и водяной охлаждается, образуя мелкие капельки воды. Так возникают облака, которые ты можешь каждый день наблюдать на небе. В их состав могут входить многочисленные капельки воды. Это водяные облака. В некоторых из них могут присутствовать мелкие кристаллы. Такие облака называют ледяными. А если в составе наблюдаются и капельки воды и кристаллы, то они являются смешанными. Ледяные облака образуются на самых больших высотах.

Процесс образования капель воды из пара является обратным процессу испарения, он получил название - конденсация (от латинского - "сгущение"). В природе этот процесс ты можешь наблюдать при выпадении росы и возникновении туманов.

Явление конденсации активно применяют и в фармакологии. Таким образом очищают воду, которая используется при лабораторных исследованиях и в изготовлении лекарств. Процесс состоит из трех этапов: воду преобразуют в пар, пар вновь переходит в жидкое состояние, а образовавшиеся капли собирают путем стекания (дистилляцией). Получилась дистиллированная вода. Но она не является абсолютно чистой, потому что к ней примешиваются частицы атмосферного воздуха. Почти аналогичный состав наблюдается у очищенной снеговой или дождевой воды.

СОВМЕСТИТЕ ПОЛЕЗНОЕ С ПРИЯТНЫМ!

Откуда берётся вода?

Цель

Познакомить с процессом конденсации.

Материалы

  • ёмкость с горячей водой
  • зеркало.

Я подержала охлажденное зеркало над паром. Я рассмотрела капельки воды, которые появились на нём. Откуда взялась эта вода?

Это пар осел на зеркале и охладился, превратившись в воду. Тоже повторили, но с тёплым зеркалом - капель воды очень мало.

Почему?

Процесс превращения пара в воду происходит при охлаждении пара.

Куда исчезает вода?

Цель

Выявить процесс испарения воды, зависимость скорости испарения от условий (температура воздуха, наличие ветра).

Материалы

  • Три одинаковые ёмкости с одинаковым количеством воды.

Нужно налить одинаковое количество воды в ёмкости, сделать отметку уровня и поместить в разные условия: на батарею, около окна и в прохладное место (тумба).

Теперь наблюдаем за процессом испарения воды, фиксируют в дневнике наблюдений .

Почему?

Вода быстрее испаряется в тепле (у батареи), потом около окна (ветер - сквозняк), в последнюю очередь в тумбе (там прохладно, нет сквозняка).

Водяной пар, превращается в водяные капли?

Понадобится:

  • .Чайник
  • .Горелка
  • .Вода
  • .Металлическая кружка
  • Несколько куликов льда и ледяная вода

Технологический процесс:

  1. Наполните чайник водой.
  2. Дайте воде вскипеть.
  3. Положите несколько кубиков льда и ледяную воду в металлическую кружку.
  4. Когда чайник закипит, сделайте так, чтобы поток пара был направлен на металлическую кружку.

Каков результат?

Водяные капли появляются на внешней поверхности металлической кружки.

Почему?

Водяной пар превращается в капли воды при соприкосновении с холодной поверхностью. Этот процесс, во время которого вода меняет свое газообразное состояние на жидкое, называется "конденсацией". Из-за того что металлическая кружка намного холоднее, чем кипящая вода в чайнике, поток пара, выходящий из него, превращался в капли воды, как только касался поверхности кружки.

Страница 1

Водяной пар непрерывно поступает в атмосферу путем испарения с водных поверхностей, с влажной почвы и путем транспирации растений, при этом в разных местах и в разное время он поступает в различных количествах. От земной поверхности он распространяется вверх, а воздушными течениями переносится из одних мест Земли в другие.

В атмосфере может возникать состояние насыщения. В таком состоянии водяной пар содержится в воздухе в количестве, предельно возможном при данной температуре. Водяной пар при этом называют насыщающим (или насыщенным), а воздух, содержащий его, насыщенным.Состояние насыщения обычно достигается при понижении температуры воздуха. Когда это состояние достигнуто, то при дальнейшем понижении температуры часть водяного пара становится избыточной и конденсируется, переходит в жидкое или твердое состояние. В воздухе возникают водяные капельки и ледяные кристаллики облаков и туманов. Облака могут снова испаряться; в других случаях капельки и кристаллики облаков, укрупняясь, могут выпадать на земную поверхность в виде осадков. Вследствие всего этого содержание водяного пара в каждом участке атмосферы непрерывно меняется.

С водяным паром в воздухе и с его переходами из газообразного состояния в жидкое и твердое связаны важнейшие процессы погоды и особенности климата. Наличие водяного пара в атмосфере существенно сказывается на тепловых условиях атмосферы и земной поверхности. Водяной пар сильно поглощает длинноволновую инфракрасную радиацию, которую излучает земная поверхность. В свою очередь и сам он излучает инфракрасную радиацию, большая часть которой идет к земной поверхности. Это уменьшает ночное охлаждение земной поверхности и тем самым также нижних слоев воздуха. На испарение воды с земной поверхности затрачиваются большие количества тепла, а при конденсации водяного пара в атмосфере это тепло отдается воздуху. Облака, возникающие в результате конденсации, отражают и поглощают солнечную радиацию на ее пути к земной поверхности. Осадки, выпадающие из облаков, являются важнейшим элементом погоды и климата. Наконец, наличие водяного пара в атмосфере имеет важное значение для физиологических процессов.

Влагосодержание воздуха, прежде всего, зависит от того, сколько водяного пара попадает в атмосферу путем испарения с земной поверхности в том же районе. Естественно, что над океанами оно больше, чем над материками, так как испарение с поверхности океана не ограничено запасами воды. В то же время в каждом месте влагосодержание зависит и от атмосферной циркуляции: воздушные течения приносят в данный район воздушные массы более влажные или более сухие из других областей Земли. Наконец, для каждой температуры существует состояние насыщения, т. е. существует некоторое предельное влагосодержание, которое не может быть превзойдено. Для разных целей применяются еще три характеристики влажности. Во-первых, это точка росы τ, т. е. та температура, при которой содержащийся в воздухе водяной пар мог бы насытить воздух. Так, например, если при температуре воздуха +27° упругость пара в нем 23,4 мб, то такой воздух не является насыщенным. Для того чтобы он стал насыщенным, нужно было бы понизить его температуру до +20°. Вот эта последняя величина +20° и является в данном случае точкой росы для воздуха. Очевидно, что, чем меньше разница между фактической температурой и точкой росы, тем ближе воздух к насыщению. При насыщении точка росы равна фактической температуре.

Другая характеристика называется отношением смеси. Отношение смеси есть содержание водяного пара в граммах на килограмм сухого воздуха. Эта величина мало отличается от удельной влажности.

Третья характеристика - дефицит влажности, т. е. разность между упругостью насыщения E при данной температуре воздуха и фактической упругостью е пара в воздухе: d=E - е. Иначе говоря, дефицит влажности характеризует, сколько водяного пара недостает для насыщения воздуха при данной температуре. Выражается он в миллиметрах ртутного столба или в миллибарах.

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...