Лекция на тему: "Амины. Аминокислоты

Амины алифатического ряда Амины - органические соединения, которые можно рассматривать как производные углеводородов, образованные в результате замещения атомов водорода в углеводородной молекуле остатками аммиака (аминогруппами). Амины рассматривают и как производные аммиака, в котором атомы водорода замещены углеводородными радикалами R – H NH 3 R – NH 2 углеводород аммиак амин

Так как в аммиаке радикалами могут быть последовательно замещены все водородные атомы, существуют три группы аминов. Амины, в которых азот соединен с одним радикалом, называются первичными, с двумя радикалами – вторичными и с тремя радикалами – третичными R R | | R – NH 2 R – NH R – N – R первичный вторичный третичный амин амин

Амины могут содержать одну, две и более аминогрупп, соответственно различают моноамины, диамины и т. д. Следует иметь в виду, что диамины с двумя аминогруппами при одном углеродном атоме не существуют. Поэтому простейшим диамином является этилендиамин, содержащий две аминогруппы при различных углеродных атомах: NH 2 – CH 2 – NH 2 этилендиамин (1, 2 - этандиамин)

С аминами тесно связаны органические вещества, являющиеся производными аммониевых соединений. Производные гидроксида аммония, содержащие в комплексном аммониевом катионе вместо атомов водорода радикалы, называют гидроксидами замещенного аммония; соединения, содержащие ион четырехзамещенного аммония, в котором с азотом вместо всех четырех атомов водорода связаны четыре радикала, называют четвертичными аммониевыми основаниями:

Номенклатура аминов По правилам Международной номенклатуры, если аминогруппа в соединении является главной, наличие ее обозначают окончанием –амин; когда имеется несколько таких групп, используют окончание с греческими числительными – диамин, триамин и т. д.

Для наименования первичных аминов или диаминов с первичными аминогруппами указанные окончания добавляются к названиям соответствующих одновалентных или двухвалентных радикалов: CH 3 | CH 3 – NH 2 CH 3 – CH – NH 2 метиламин изопропиламин CH 2 – CH 2 | | NH 2 NH 2 тетраметилендиамин

Названия аминов могут быть произведены и от заместительных названий соответствующих углеводородов, тогда цифрами указывают атомы углерода главной цепи, связанные с аминогруппой. Например CH 3 5 4 │ 3 2 1 CH 3 ― CH ― CH 2 ― CH 3 │ NH 2 4 -метилпентанамин-2

Названия вторичных и третичных аминов с одинаковыми радикалами образуются из названий этих радикалов и указывающих их число греческих числительных. Например: CH 2 ― CH 3 │ СH 3 ― NH ― CH 3 ― CH 2 ― N ― CH 2 ― CH 3 диметиламин триэтиламин

Название соединений, содержащих ион замещенного аммония составляют из наименований радикалов: CH 3 CH 3 │ │ CH 3 ― N+ ― CH 3 OH― CH 3 ― N+ ― CH 3 Cl ― │ │ CH 3 C 2 H 5 гидроксид хлорид тетраметиламмония триметилэтиламмония

Химические свойства Как производные аммиака амины проявляют основные свойства и являются органическими основаниями. Подобно аммиаку амины с водой образуют катионы замещенного аммония и гидроксильные анионы: + CH 3 NH 2 + HOH CH 3 NH 3 + OH ¯ метиламин ион метиламина

Водные растворы аминов можно представить как растворы гидроксидов замещенного аммония; в случае метиламина – гидроксида метиламмония CH 3 NH 3 OH. Они имеют щелочную реакцию и окрашивают лакмус в синий цвет.

Под влиянием простейших алкильных радикалов основные свойства аминогруппы увеличиваются, поэтому амины жирного ряда являются более сильными основаниями, чем аммиак. Особенно сильные основные свойства проявляют четвертичные аммониевые основания.

Увеличение основных свойств аминогруппы в аминах сравнительно с аммиаком объясняется электронодонорными свойствами алкильных радикалов, их способностью отталкивать электроны связей, соединяющих их с другими атомами или группами: ●● CH 3 N H CH 3 N H CH 3 метиламин диметиламин

Алкилы увеличивают общую электронную плотность атома азота, несущего неподеленную электронную пару, и, следовательно, его способность присоединять протон. Как основание аммиак с кислотами дает соли аммония. Аналогично проявляются основные свойства аминов.

CH 3 NH 2 + HCl CH 3 NH 3 Cl метиламин хлорид метиламмония CH 3 NH 2 + H 2 SO 4 CH 3 NH 3 SO 4 2 метиламмония сульфат

Едкие щелочи, как более сильные основания, вытесняют амины из их солей. CH 3―NH 3 Cl + Na. OH → CH 3―NH 2 + H 2 O + Na. Cl метиламин Реакция ускоряется при нагревании.

Реакции аминов с азотистой кислотой При действии азотистой кислоты (HNO 2) на первичные амины выделяются газообразный азот и вода и образуется спирт: R―N H 2 + O = N― OH первичный амин R―OH + N 2 + H 2 O азотистая кислота спирт Например: CH 3― N H 2 + O = N― OH CH 3 OH + N 2 метиламин метанол + H 2 O

Вторичные амины при действии на них азотистой кислоты образуют нитрозамины: R R N H + HO N = О + H 2 O R R вторичный азотистая нитрозамин кислота

Например: CH 3 N H + HO N = О N N = О +H 2 O CH 3 CH 3 диметиламин диметилнитрозамин Третичные амины, в которых при азоте нет водорода, не реагируют с азотистой кислотой.

Аминокислоты – это органические соединения, в состав которых входят две функциональные группы: карбоксильная –COOH и аминогруппа –NH 2. Простейшая аминокислота – это аминоуксусная кислота NH 2 COOH, называемая также глицином.

Если один атом водорода в метильном радикале молекулы уксусной кислоты заменить на группу –NH 2, то получится формула аминоуксусной кислоты: CH 3 COOH - уксусная кислота NH 2 COOH – аминоуксусная кислота NH 2 – функциональная группа, называемая аминогруппой.

Амфотерность аминокислот Одновременное наличие в молекулах аминокислот двух функциональных групп определяет их своеобразные химические свойства. Карбоксильная группа – СООН в аминокислотах определяет их кислотные свойства.

Аминогруппа – NH 2 определяет основные свойства вещества, так как способна присоединять к себе катион водорода за счёт наличия свободной электронной пары у атома азота: - NH 2 + H+ - NH 3+. . Так же ведёт себя аммиак, образуя при этом ион аммония NH 4+ : NH 3 + H+ NH 4+. . Аминокислоты – это органические вещества, которые обладают одновременно кислотными и основными свойствами.

Свойства АК. 1. Образование солей Образование внутренних солей Формула не отражает строения АК. Аминогруппа нейтрализует карбоксильную группу, поэтому АК в твёрдом виде и в растворе при p. H = изоэлектрической точке находятся в виде цвиттерионов:

2. Реакции по аминогруппе Ацилирование Хлористый ацетил (Ацетилхлорид) ацетил N-ацетиламинокислота Лизин N 6 -ацетиллизин N, N-диацетиллизин

Реакции по аминогруппе 2, 4 -динитрофторбензол ДНФ-производное АК N-(2, 4 -динитрофенил)аланин Используется для определения N-концевой аминокислоты по Сэнджеру (Сенгеру)

Реакция поликонденсации Благодаря наличию кислотной и основной групп молекулы аминокислот способны взаимодействовать друг с другом и образовывать полимеры – белки. HNH-CH 2 -COOH + HNH-CH 2 -COOH НNH-CH 2 CO- NH-CH 2 COOH + H 2 O

Реакции получения полимеров, которые сопровождаются образованием низкомолекулярного продукта, например воды, называются реакциями поликонденсации. При соединении молекул аминокислот друг с другом возникает связь, называемая пептидной. Связь между остатком аминогруппы -NH- одной молекулы аминокислоты и остатком карбоксильной группы –СОдругой молекулы аминокислоты называется пептидной связью: -CO-NH-.

Белки – продукты реакции поликонденсации аминокислот. Белки имеют очень сложное строение. Мономерами пептидов и белков являются α-аминокислоты.

В общем виде аминокислоты, участвующие в образовании белков, могут быть представлены формулой: H 2 N–CH(R)–COOH. Группа R, присоединенная к атому углерода, определяет различие между аминокислотами, образующими белки. В организмах живых существ содержится более 100 различных аминокислот, однако, в строительстве белков используются не все, а только 20, так называемых «фундаментальных» .

Содержащие ОН-группу Ceрин a-амино-b-оксипропионовая кислота 2 -амино-3 -гидроксипропановая кислота Ser, Сeр Трeонин a-амино-b-оксимасляная кислота 2 -амино-3 -гидроксибутановая кислота Thr, Трe

Серусодержащие АК Цистeин Цистеин Цистин a-амино-b-тиопропионовая кислота 2 -амино-3 -сульфанилпропановая кислота (2 -амино-3 -тиопропановая кислота, 2 -амино-3 -мeркаптопропановая кислота – устаревш.) Cys, Цис Мeтионин a-амино-g-мeтилтиомасляная кислота 2 -амино-4 -метилсульфанилбутановая кислота (2 -амино-4 -метилтиобутановая кислота – устаревш.) Met, Мет.

Моноаминодикарбоновые кислоты и их амиды Аспарагиновая кислота Аминоянтарная кислота Аминобутандиовая кислота Asp, Аспарагин Амид аспарагиновой кислоты 2, 5 -диамино-5 -оксобутановая кислота Asn, Асн Глутаминовая кислота a-aминоглутаровая кислота 2 -аминопентандиовая кислота Glu, Глутамин Амид глутаминовой кислоты 2, 6 -диамино-6 -оксопентановая кислота Gln, Глн

Содержащие аминогруппу Лизин a, e-диаминокапроновая кислота 2, 6 -диаминогексановая кислота Lys, Лиз Аргинин a-амино-d-гуанидилвалериановая кислота 2 -амино-5 -[амино(имино)метил]аминопентановая к-та Arg, Арг

Ароматические АК Фенилаланин a-амино-b-фенилпропионовая к-та 2 -амино-3 -фенилпропановая к-та Phe, Фен Тирозин a-амино-b-(п-оксифенил)пропионовая к-та 2 -амино-3 -(4 -гидроксифенил)пропановая к-та Tyr, Тир

Гетероциклические АК Триптофан a-амино-b-индолилпропионовая к-та 2 -амино-3 -(1 H-индол-3 -ил)пропановая к-та Trp, Три Гистидин a-амино-b-имидазолилпропионовая к-та 2 -амино-3 -(1 H-имидазол-4 -ил)пропионовая к-та His, Гис Пролин Пирролидин-a-карбоновая к-та 2 -пирролидинкарбоновая к-та Pro, Про Для сравнения- аланин

Аминокислоты участвующие в образовании белков Название Глицин Структура Обозначение Гли Аланин Ала Валин Вал Лейцин Лей Изолейцин Иле

Энантиомерия АК В природных белках присутствуют остатки только L-аминокислот. В пептидах бактериального происхождения есть остатки Dаминокислот. Глицин не имеет энантиомеров, т. к. нет хирального атома углерода.

Уровни структурной организации белка первичная структура – аминокислотная последовательность вторичная структура – локальные высокоупорядоченные конформации белковой цепи (a-спираль, b-структура) третичная структура – форма белковой молекулы; трёхмерная нативная структура белка четвертичная структура – агрегат из нескольких молекул белка

первичная структура первичная структура – последовательность аминокислотных остатков в молекуле белка или пептида. NH 2 -Tyr-Pro-Lys-Gly-Phe-Tyr-Lys-COOH Первичная структура определяет все остальные уровни структурной организации белка

Вторичная структура Вторичная структура- локальные высокоупорядоченные конформации белковой цепи – спирали и складчатые слои.

a-спираль Правые a-спирали полипептидной цепи стабилизируются водородными связями, где С=О группы остова полипептида связаны с лежащими от них в направлении С-конца цепи H-N группами (показано синим).

Структура b-складчатых слоев b-структура образуется из нескольких полиипептидных цепей, связанных водородными связями. Она существует в виде складчатых листов. Так как поверхность b-структуры рифленая, ее еще называют "складчатой b-структурой".

Третичная структура третичная структура – форма белковой молекулы; трёхмерная структура белка. Укладка нерегулярных областей и a и b-структур в глобулу определяет третичную структуру белка

Четвертичная структура Четвертичная структура- агрегат нескольких белковых молекул образующих одну структуру Взаимодействия: ионные, водородные, гидрофобные, ковалентные (дисульфидные) Протомер - отдельная полипептидная цепь Субъединица- функциональная единица




Задача: Определите молекулярную формулу органического вещества в состав которого входит: 38,7% углерода, 45,15% азота и 16,5% водорода. Плотность по водороду равна 15,5. Определите молекулярную формулу органического вещества в состав которого входит: 38,7% углерода, 45,15% азота и 16,5% водорода. Плотность по водороду равна 15,5.


Амины. План изучения темы: План изучения темы: Определение, классификация Определение, классификация Биологическое значение Биологическое значение Номенклатура, изомерия Номенклатура, изомерия Строение, свойства Строение, свойства Получение и применение Получение и применение


Цель: Сформировать представление о строении, свойствах, получении и применении аминов в сравнении с аммиаком. Сформировать представление о строении, свойствах, получении и применении аминов в сравнении с аммиаком. Закрепить умения работать с дополнительными источниками информации, составлять ОК в виде таблиц, схем, сравнивать, анализировать, делать выводы, работать в паре и группе. Закрепить умения работать с дополнительными источниками информации, составлять ОК в виде таблиц, схем, сравнивать, анализировать, делать выводы, работать в паре и группе.




Классификация аминов: По числу радикалов: По числу радикалов: Первичные Первичные Вторичные Вторичные Третичные Третичные По характеру радикала: По характеру радикала: Предельные Предельные Ароматические Ароматические Смешанные Смешанные По числу аминогрупп: По числу аминогрупп: Моноамины Моноамины Диамины Диамины полиамины полиамины



Аминокислотами называются карбоновые кислоты, в углеводородном радикале которых один или несколько атомов водорода замещены аминогруппами. В зависимости от взаимного расположения карбоксильной и аминогрупп различают a-, b-, g- и т.д. аминокислоты. Например,

b
CH3- a
CH-COOH a- аминопропионовая кислота
I
NH2

b
CH2-
I
NH2 a
CH2-COOH b- аминопропионовая кислота

Чаще всего термин "аминокислота" применяют для обозначения карбоновых кислот, аминогруппа которых находится в a- положении, т.е. для a- аминокислот. Общую формулу a- аминокислот можно представить следующим образом:

H2N-
CH-COOH
I
R

В зависимости от природы радикала (R) - аминокислоты делятся на алифатические, ароматические и гетероциклические.

В таблице представлены важнейшие - аминокислоты, входящие в состав белков.

Таблица. Важнейшие a- аминокислоты

Аминокислота Сокращенное (трехбуквенное) название
аминокислотного остатка в
макромолекулах пептидов и белков.
Строение R
Алифатические
Глицин H-
Аланин CH 3 -
Валин* (CH 3 ) 2 CH-
Лейцин* (CH 3 ) 2 CH-CH 2 -
Изолейцин* CH 3 -CH 2 -CH-
I
CH 3
Содержащие OH- группу
Серин HO-CH 2 -
Треонин* CH 3 -CH(OH)-
Содержащие COOH- группу
Аспарагиновая HOOC-CH 2 -
Глутаминовая HOOC-CH 2 -CH 2 -
Содержащие NH 2 CO- группу
Аспарагин NH 2 CO-CH 2 -
Глутамин NH 2 CO-CH 2 -CH 2 -
Содержащие NH 2 - группу
Лизин* NH 2 -(CH 2 ) 3 -CH 2 -
Аргинин NH 2 -C-NH-(CH 2 ) 2 -CH 2 -
II
NH
Серусодержащие
Цистеин HS-CH 2 -
Метионин* CH 3 -S-CH 2 -CH 2 -
Ароматические
Фенилаланин*
Тирозин
Гетероциклические
Триптофан*
Гистидин
Иминокислота
Пролин

*Незаменимые a- аминокислоты

Изомерия

Наряду с изомерией, обусловленной строением углеродного скелета и положением функциональных групп, для a- аминокислот характерна оптическая (зеркальная) изомерия. Все a- аминокислоты, кроме глицина, оптически активны. Например, аланин имеет один асимметрический атом углерода (отмечен звездочкой),

H2N -
H
I
C*-COOH
I
CH3

А значит, существует в виде оптически активных энантиомеров:

H-
COOH
+-NH2
CH3
D- аланин

H2N-
COOH
+-H
CH3
L- аланин

Все природные a- аминокислоты относятся к L- ряду.

Получение

1) Важнейший источник аминокислот - природные белки, при гидролизе которых образуются смеси a- аминокислот. Разделение этой смеси - довольно сложная задача, однако по обыкновению одна или две аминокислоты образуются в значительно больших количествах, чем все другие, и их удается выделить достаточно просто.

2) Синтез аминокислот из галогенозамещенных кислот действием аммиака

Cl-
CH-COOH + 2NH3 ® H2N-
I
R CH-COOH + NH4Cl
I
R

3) Микробиологический синтез. Известны микроорганизмы, которые в процессе жизнедеятельности продуцируют a- аминокислоты белков.

Физические свойства

Аминокислоты представляют собой кристаллические вещества с высокими (выше 250°С) температурами плавления, которые мало отличаются у индивидуальных аминокислот и поэтому нехарактерны. Плавление сопровождается разложением вещества. Аминокислоты хорошо растворимы в воде и нерастворимы в органических растворителях, чем они похожи на неорганические соединения. Многие аминокислоты обладают сладким вкусом.

Химические свойства

1) Некоторые свойства аминокислот, в частности высокая температура плавления, объясняется своеобразным их строением. Кислотная (-COOH) и основная (-NH2) группы в молекуле аминокислоты взаимодействуют друг с другом, образуя внутренние соли (биполярные ионы). Например, для глицина

H2N-CH2-COOH « H3N+-CH2-COO-

2) Вследствие наличия в молекулах аминокислот функциональных групп кислотного и основного характера a- аминокислоты являются амфотерными соединениями, т.е. они образуют соли как с кислотами, так и со щелочами.

H2N-
CH-COOH + HCl ® Cl-(хлористоводородная соль a-аминокислоты)
I
R

H2N-
CH-COOH + NaOH ® H2N-
I
R CH-COO-Na+(натриевая соль a-аминокислоты) + H2O
I
R

3) В реакции со спиртами образуются сложные эфиры.

Этиловый эфир аланина

4) a- Аминокислоты можно ацилировать, в частности, ацетилировать, действуя уксусным ангидридом или хлористым ацетилом. В результате образуются N- ацильные производные a- аминокислот (символ "N" означает, что ацил связан с атомом азота).


N - ацетилаланин

5) a- Аминокислоты вступают друг с другом в реакцию поликонденсации, приводя к амидам кислот. Продукты такой конденсации называются пептидами. При взаимодействии двух аминокислот образуется дипептид:

H2N-
H
I
CH- O
II
C-OH + H-NH- CH3
I
CH- O
II
C-OH ®

Глицин аланин

® H2N- H
I
CH- O
II
C-NH- CH3
I
CH- O
II
C-OH + H2O

глицилаланин

При конденсации трех аминокислот образуется трипептид и т.д.

Связь - O
II
C-NH - называется пептидной связью.

Пептиды. Белки

Пептиды и белки представляют собой высокомолекулярные органические соединения, построенные из остатков a- аминокислот, соединенных между собой пептидными связями.

Ни один из известных нам живых организмов не обходится без белков. Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов - катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д. Как видно, функции белков в природе универсальны. Белки входят в состав мозга, внутренних органов, костей, кожи, волосяного покрова и т.д. Основным источником a- аминокислот для живого организма служат пищевые белки, которые в результате ферментативного гидролиза в желудочно-кишечном тракте дают a- аминокислоты. Многие a- аминокислоты синтезируются в организме, а некоторые необходимые для синтеза белков a- аминокислоты не синтезируются в организме и должны поступать извне. Такие аминокислоты называются незаменимыми. К ним относятся валин, лейцин, треонин, метионин, триптофан и др. (см.таблицу). При некоторых заболеваниях человека перечень незаменимых аминокислот расширяется.

Пептиды и белки различают в зависимости от величины молекулярной массы. Условно считают, что пептиды содержат в молекуле до 100 (соответствует молекулярной массе до 10000), а белки - свыше 100 аминокислотных остатков (молекулярная масса от 10000 до нескольких миллионов). При этом в пептидах различают олигопептиды, содержащие в цепи не более 10 аминокислотных остатков, и полипептиды, содержащие до 100 аминокислотных остатков.

Конструкция полипептидной цепи одинакова для всего многообразия пептидов и белков. Эта цепь имеет неразветвленное строение и состоит из чередующихся метиновых (CH) и пептидных (CONH) групп. Различия такой цепи заключаются в боковых радикалах, связанных с метиновой группой, и характеризующих ту или иную аминокислоту. Один конец цепи со свободной аминогруппой называется N- концом, другой, на котором находится аминокислота со свободной карбоксильной группой, называется C- концом. Пептидные и белковые цепи записываются с N- конца. Иногда пользуются специальными обозначениями: на N- конце пишется NH- группа или только атом водорода -H, а на C- конце - либо карбоксильная COOH- группа, либо только гидроксильная OH- группа.

Для полипептидов и белков характерны четыре уровня пространственной организации, которые принято называть первичной, вторичной, третичной и четвертичной структурами.

Первичная структура белка - специфическая аминокислотная последовательность, т.е. порядок чередования a- аминокислотных остатков в полипептидной цепи.

Вторичная структура белка - конформация полипептидной цепи, т.е. способ скручивания цепи в пространстве за счет водородных связей между группами NH и CO. Одна из моделей вторичной структуры - a- спираль.

Третичная структура белка - трехмерная конфигурация закрученной спирали в пространстве, образованная за счет дисульфидных мостиков -S-S- между цистеиновыми остатками и ионных взаимодействий.

Четвертичная структура белка - структура, образующаяся за счет взаимодействия между разными полипептидными цепями. Четвертичная структура характерна лишь для некоторых белков, например гемоглобина.

Химические свойства

1) Денатурация. Утрата белком природной (нативной) конформации, сопровождающаяся обычно потерей его биологической функции, называется денатурацией. С точки зрения структуры белка - это разрушение вторичной и третичной структур белка, обусловленное воздействием кислот, щелочей, нагревания, радиации и т.д. Первичная структура белка при денатурации сохраняется. Денатурация может быть обратимой (так называемая, ренатурация) и необратимой. Пример необратимой денатурации при тепловом воздействии - свертывание яичного альбумина при варке яиц.

2) Гидролиз белков - разрушение первичной структуры белка под действием кислот, щелочей или ферментов, приводящее к образованию a- аминокислот, из которых он был составлен.

3) Качественные реакции на белки:

A) Биуретовая реакция - фиолетовое окрашивание при действии солей меди (II) в щелочном растворе. Такую реакцию дают все соединения, содержащие пептидную связь.

B) Ксантопротеиновая реакция - появление желтого окрашивания при действии концентрированной азотной кислоты на белки, содержащие остатки ароматических аминокислот (фенилаланина, тирозина).

Большое биологическое значение имеют аминокислоты - соединения со смешанными , в которых, как в аминах, содержатся аминогруппы и одновременно, как в кислотах, - карбоксильные группы - СООН, В качестве примера можно привести простейшие: аминоуксусную кислоту, или глицин, и аминопропионовую кислоту, или аланин. Строение других природных аминокислот этого типа можно выразить приведенной ниже общей формулой (где R - углеводородный радикал, который может содержать и различные функциональные группы):

Аминокислоты - амфотерные соединения: они образуют соли с основаниями (за счет карбоксильной группы) и с кислотами (за счет аминогруппы).

Ион водорода, отщепляющийся при диссоциации от карбоксила аминокислоты, может переходить к ее аминогруппе с образованием аммониевой группировки. Таким образом, аминокислоты существуют и вступают в реакции также в виде биполярных конов (внутренних солей):

Этим объясняется, что растворы аминокислот, содержащих одну карбоксильную и одну аминогруппу, имеют нейтральную реакцию.

Из молекул аминокислот строятся молекулы белковых веществ, или белков, которые при полном гидролизе под влиянием минеральных кислот, щелочей или ферментов распадаются, образуя смеси аминокислот.

Белки - природные высокомолекулярные азотсодержащие органические соединения. Они играют первостепенную роль во всех жизненных процессах, являются носителями жизни. Белки содержатся во всех тканях организмов, в крови, в костях. Ферменты (энзимы), многие гормоны представляют собой сложные белки. Кожа, волосы, шерсть, перья, рога, копыта, кости, нити йатуралм ного шелка образованы белками. Белок, так же как углеводы и жиры, - важнейшая необходимая составная Засть пищи.

В состав белков входят углерод, водород, , азот и часто сера, фосфор, железо. Молекулярное массы велики - от 1500 до нескольких миллионов.

Проблема строения и синтеза белков - одна из важнейших в Современной науке. В этой области в последние десятилетия достигнуты большие успехи. Установлено, что десятки, сотни и тысячи молекул аминокислот, образующих гигантские молекулы белков, соединяются друг с другом, выделяя воду за счет карбоксильных и аминогрупп; структуру цепи такой молекулы можно представить так:

В молекулах белков многократно повторяются группы атомов ; их называют амидными, или в химии белков - пептидными группами. Соответственно белки относят к природным высокомолекулярным полиамидам или полипептидам.

Все многообразие белков образовано 20 различными аминокислотами; при этом для каждого белка строго специфичной является последовательность, в которой остатки входящих в его состав аминокислот соединяются друг с другом. Найдены методы выяснения этой последовательности; в результате уже точно установлено строение некоторых белков. И самым замечательным достижением в этой области явилось осуществление синтеза из аминокислот простейших белков: как уже указывалось, в годах XX века синтетически получены гормон инсулин и фермент рибонуклеаза. Таким образом, доказана принципиальная возможность синтеза еще более сложных белков.


Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...