Как обозначается множество иррациональных чисел. Что значит иррациональное число

От абстрактности математических понятий порой настолько веет и отстраненностью, что невольно возникает мысль: «Зачем это всё?». Но, несмотря на первое впечатление, все теоремы, арифметические операции, функции и т.п. – не более, чем желание удовлетворить насущные потребности. Особенно чётко это можно заметить на примере появления различных множеств.

Всё началось с появления натуральных чисел. И, хотя, вряд ли сейчас кто-то сможет ответить, как точно это было, но скорее всего, ноги у царицы наук растут откуда-то из пещеры. Здесь, анализируя количество шкур, камней и соплеменников, человек множество «чисел для счёта». И этого ему было достаточно. До какого-то момента, конечно же.

Дальше потребовалось шкуры и камни делить и отнимать. Так возникла потребность в арифметических операциях, а вместе с ними и рациональных , которые можно определить как дробь типа m/n, где, например, m - количество шкур, n – количество соплеменников.

Казалось бы, уже открытого математического аппарата вполне достаточно, чтобы радоваться жизнью. Но вскоре оказалось, что случаи, когда результат не то, что не целое число, но даже не дробь! И, действительно, квадратный корень из двух никак иначе не выразить с помощью числителя и знаменателя. Или, например, всем известное число Пи, открытое древнегреческим учёным Архимедом, так же не является рациональным. И таких открытий со временем стало настолько много, что все неподдающиеся «рационализации» числа объединили и назвали иррациональными.

Свойства

Рассмотренные ранее множества принадлежат набору фундаментальных понятий математики. Это означает, что их не получится определить через более простые математические объекты. Но это можно сделать с помощью категорий (с греч. «высказывания») или постулатов. В данном случае лучше всего было обозначить свойства данных множеств.

o Иррациональные числа определяют Дедекиндовы сечения в множестве рациональных чисел, у которых в нижнем нет наибольшего, а в верхнем нет наименьшего числа.

o Каждое трансцендентное число является иррациональным.

o Каждое иррациональное число является либо алгебраическим, либо трансцендентным.

o Множество чисел всюду плотно на числовой прямой: между любыми имеется иррациональное число.

o Множество несчётно, является множеством второй категории Бэра.

o Это множество упорядоченное, т. е. для каждых двух различных рациональных чисел a иb можно указать, какое из них меньше другого.
o Между каждыми двумя различными рациональными числами существует еще по крайней мере одно , а следовательно, и бесконечное множество рациональных чисел.

o Арифметические действия (сложение, умножение и деление) над любыми двумя рациональными числами всегда возможны и дают в результате определенное рациональное же число. Исключением является деление на нуль, которое невозможно.

o Каждое рациональное число может быть представлено в виде десятичной дроби (конечной или бесконечной периодической).

Что такое иррациональные числа? Почему они так называются? Где они используются и что собой представляют? Немногие могут без раздумий ответить на эти вопросы. Но на самом деле ответы на них довольно просты, хоть нужны не всем и в очень редких ситуациях

Сущность и обозначение

Иррациональные числа представляют собой бесконечные непериодические Необходимость введения этой концепции обусловлена тем, что для решения новых возникающих задач уже было недостаточно ранее имеющихся понятий действительных или вещественных, целых, натуральных и рациональных чисел. Например, для того, чтобы вычислить, квадратом какой величины является 2, необходимо использовать непериодические бесконечные десятичные дроби. Кроме того, многие простейшие уравнения также не имеют решения без введения концепции иррационального числа.

Это множество обозначается как I. И, как уже ясно, эти значения не могут быть представлены в виде простой дроби, в числителе которой будет целое, а в знаменателе -

Впервые так или иначе с этим явлением столкнулись индийские математики в VII веке когда было обнаружено, что квадратные корни из некоторых величин не могут быть обозначены явно. А первое доказательство существования подобных чисел приписывают пифагорейцу Гиппасу, который сделал это в процессе изучения равнобедренного прямоугольного треугольника. Серьезный вклад в изучение этого множества привнесли еще некоторые ученые, жившие до нашей эры. Введение концепции иррациональных чисел повлекло за собой пересмотр существовавшей математической системы, вот почему они так важны.

Происхождение названия

Если ratio в переводе с латыни - это "дробь", "отношение", то приставка "ир"
придает этому слову противоположное значение. Таким образом, название множества этих чисел говорит о том, что они не могут быть соотнесены с целым или дробным, имеют отдельное место. Это и вытекает из их сущности.

Место в общей классификации

Иррациональные числа наряду с рациональными относится к группе вещественных или действительных, которые в свою очередь относятся к комплексным. Подмножеств нет, однако различают алгебраическую и трансцендентную разновидность, о которых речь пойдет ниже.

Свойства

Поскольку иррациональные числа - это часть множества действительных, то к ним применимы все их свойства, которые изучаются в арифметике (их также называют основными алгебраическими законами).

a + b = b + a (коммутативность);

(a + b) + c = a + (b + c) (ассоциативность);

a + (-a) = 0 (существование противоположного числа);

ab = ba (переместительный закон);

(ab)c = a(bc) (дистрибутивность);

a(b+c) = ab + ac (распределительный закон);

a x 1/a = 1 (существование обратного числа);

Сравнение также проводится в соответствии с общими закономерностями и принципами:

Если a > b и b > c, то a > c (транзитивность соотношения) и. т. д.

Разумеется, все иррациональные числа могут быть преобразованы с помощью основных арифметических действий. Никаких особых правил при этом нет.

Кроме того, на иррациональные числа распространяется действие аксиомы Архимеда. Она гласит, что для любых двух величин a и b справедливо утверждение, что, взяв a в качестве слагаемого достаточное количество раз, можно превзойти b.

Использование

Несмотря на то что в обычной жизни не так уж часто приходится сталкиваться с ними, иррациональные числа не поддаются счету. Их огромное множество, но они практически незаметны. Нас повсюду окружают иррациональные числа. Примеры, знакомые всем, - это число пи, равное 3,1415926..., или e, по сути являющееся основанием натурального логарифма, 2,718281828... В алгебре, тригонометрии и геометрии использовать их приходится постоянно. Кстати, знаменитое значение "золотого сечения", то есть отношение как большей части к меньшей, так и наоборот, также

относится к этому множеству. Менее известное "серебряное" - тоже.

На числовой прямой они расположены очень плотно, так что между любыми двумя величинами, отнесенными к множеству рациональных, обязательно встречается иррациональная.

До сих пор существует масса нерешенных проблем, связанных с этим множеством. Существуют такие критерии, как мера иррациональности и нормальность числа. Математики продолжают исследовать наиболее значительные примеры на предмет принадлежности их к той или иной группе. Например, считается, что е - нормальное число, т. е. вероятность появления в его записи разных цифр одинакова. Что же касается пи, то относительно его пока ведутся исследования. Мерой иррациональности же называют величину, показывающую, насколько хорошо то или иное число может быть приближено рациональными числами.

Алгебраические и трансцендентные

Как уже было упомянуто, иррациональные числа условно разделяются на алгебраические и трансцендентные. Условно, поскольку, строго говоря, эта классификация используется для деления множества C.

Под этим обозначением скрываются комплексные числа, которые включают в себя действительные или вещественные.

Итак, алгебраическим называют такое значение, которое является корнем многочлена, не равного тождественно нулю. Например, квадратный корень из 2 будет относиться к этой категории, поскольку он является решением уравнения x 2 - 2 = 0.

Все же остальные вещественные числа, не удовлетворяющие этому условию, называются трансцендентными. К этой разновидности относятся и наиболее известные и уже упомянутые примеры - число пи и основание натурального логарифма e.

Что интересно, ни одно, ни второе не были изначально выведены математиками в этом качестве, их иррациональность и трансцендентность были доказаны через много лет после их открытия. Для пи доказательство было приведено в 1882 году и упрощено в 1894, что положило конец спорам о проблеме квадратуры круга, которые длились на протяжении 2,5 тысяч лет. Оно до сих пор до конца не изучено, так что современным математикам есть над чем работать. Кстати, первое достаточно точное вычисление этого значения провел Архимед. До него все расчеты были слишком приблизительными.

Для е (числа Эйлера или Непера), доказательство его трансцендентности было найдено в 1873 году. Оно используется в решении логарифмических уравнений.

Среди других примеров - значения синуса, косинуса и тангенса для любых алгебраических ненулевых значений.

С отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где и - целые числа . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

См. также

Примечания

Множество всех натуральных чисел обозначают буквой N. Натуральные числа, это числа которые мы используем для счета предметов: 1,2,3,4, … В некоторых источниках, к натуральным числам относят также число 0.

Множество всех целых чисел обозначается буквой Z. Целые числа это все натуральные числа, нуль и отрицательные числа:

1,-2,-3, -4, …

Теперь присоединим к множеству всех целых чисел множество всех обыкновенных дробей: 2/3, 18/17, -4/5 и та далее. Тогда мы получим множество всех рациональных чисел.

Множество рациональных чисел

Множество всех рациональных чисел обозначается буквой Q. Множество всех рациональных чисел (Q) - это множество, состоящее из чисел вида m/n, -m/n и числа 0. В качестве n,m может выступать любое натуральное число. Следует отметить, что все рациональные числа, можно представить в виде конечной или бесконечной ПЕРЕОДИЧЕСКОЙ десятичной дроби. Верно и обратное, что любую конечную или бесконечную периодическую десятичную дробь можно записать в виде рационального числа.

А как же быть например с числом 2.0100100010… ? Оно является бесконечно НЕПЕРЕОДИЧСЕКОЙ десятичной дробью. И оно не относится к рациональным числам.

В школьном курсе алгебры изучаются только вещественные (или действительные) числа. Множество всех действительных чисел обозначается буквой R. Множество R состоит из всех рациональных и всех иррациональных чисел.

Понятие иррациональных чисел

Иррациональные числа - это все бесконечные десятичные непериодические дроби. Иррациональные числа не имеют специального обозначения.

Например, все числа полученные извлечением квадратного корня из натуральных чисел, не являющихся квадратами натуральных чисел - будут иррациональными. (√2, √3, √5, √6, и т.д.).

Но не стоит думать, что иррациональные числа получаются только извлечением квадратных корней. Например, число «пи» тоже является иррациональным, а оно получено делением. И как вы не старайтесь, вы не сможете получить его, извлекая квадратный корень из любого натурального числа.

Понимание чисел, особенно натуральных чисел, является одним из старейших математических "умений". Многие цивилизации, даже современные, приписывали числам некие мистические свойства ввиду их огромной важности в описании природы. Хотя современная наука и математика не подтверждают эти "волшебные" свойства, значение теории чисел неоспоримо.

Исторически сначала появилось множество натуральных чисел, затем довольно скоро к ним добавились дроби и положительные иррациональные числа. Ноль и отрицательные числа были введены после этих подмножеств множества действительных чисел. Последнее множество, множество комплексных чисел, появилось только с развитием современной науки.

В современной математике числа вводят не в историческом порядке, хотя и в довольно близком к нему.

Натуральные числа $\mathbb{N}$

Множество натуральных чисел часто обозначается как $\mathbb{N}=\lbrace 1,2,3,4... \rbrace $, и часто его дополняют нулем, обозначая $\mathbb{N}_0$.

В $\mathbb{N}$ определены операции сложения (+) и умножения ($\cdot$) со следующими свойствами для любых $a,b,c\in \mathbb{N}$:

1. $a+b\in \mathbb{N}$, $a\cdot b \in \mathbb{N}$ множество $\mathbb{N}$ замкнуто относительно операций сложения и умножения
2. $a+b=b+a$, $a\cdot b=b\cdot a$ коммутативность
3. $(a+b)+c=a+(b+c)$, $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ ассоциативность
4. $a\cdot (b+c)=a\cdot b+a\cdot c$ дистрибутивность
5. $a\cdot 1=a$ является нейтральным элементом для умножения

Поскольку множество $\mathbb{N}$ содержит нейтральный элемент для умножения, но не для сложения, добавление нуля к этому множеству обеспечивает включение в него нейтрального элемента для сложения.

Кроме этих двух операций, на множестве $\mathbb{N}$ определены отношения "меньше" ($

1. $a b$ трихотомия
2. если $a\leq b$ и $b\leq a$, то $a=b$ антисимметрия
3. если $a\leq b$ и $b\leq c$, то $a\leq c$ транзитивность
4. если $a\leq b$, то $a+c\leq b+c$
5. если $a\leq b$, то $a\cdot c\leq b\cdot c$

Целые числа $\mathbb{Z}$

Примеры целых чисел:
$1, -20, -100, 30, -40, 120...$

Решение уравнения $a+x=b$, где $a$ и $b$ - известные натуральные числа, а $x$ - неизвестное натуральное число, требует введения новой операции - вычитания(-). Если существует натуральное число $x$, удовлетворяющее этому уравнению, то $x=b-a$. Однако, это конкретное уравнение не обязательно имеет решение на множестве $\mathbb{N}$, поэтому практические соображения требуют расширения множества натуральных чисел таким образом, чтобы включить решения такого уравнения. Это приводит к введению множества целых чисел: $\mathbb{Z}=\lbrace 0,1,-1,2,-2,3,-3...\rbrace$.

Поскольку $\mathbb{N}\subset \mathbb{Z}$, логично предположить, что введенные ранее операции $+$ и $\cdot$ и отношения $ 1. $0+a=a+0=a$ существует нейтральный элемент для сложения
2. $a+(-a)=(-a)+a=0$ существует противоположное число $-a$ для $a$

Свойство 5.:
5. если $0\leq a$ и $0\leq b$, то $0\leq a\cdot b$

Множество $\mathbb{Z} $ замкнуто также и относительно операции вычитания, то есть $(\forall a,b\in \mathbb{Z})(a-b\in \mathbb{Z})$.

Рациональные числа $\mathbb{Q}$

Примеры рациональных чисел:
$\frac{1}{2}, \frac{4}{7}, -\frac{5}{8}, \frac{10}{20}...$

Теперь рассмотрим уравнения вида $a\cdot x=b$, где $a$ и $b$ - известные целые числа, а $x$ - неизвестное. Чтобы решение было возможным, необходимо ввести операцию деления ($:$), и решение приобретает вид $x=b:a$, то есть $x=\frac{b}{a}$. Опять возникает проблема, что $x$ не всегда принадлежит $\mathbb{Z}$, поэтому множество целых чисел необходимо расширить. Таким образом вводится множество рациональных чисел $\mathbb{Q}$ с элементами $\frac{p}{q}$, где $p\in \mathbb{Z}$ и $q\in \mathbb{N}$. Множество $\mathbb{Z}$ является подмножеством, в котором каждый элемент $q=1$, следовательно $\mathbb{Z}\subset \mathbb{Q}$ и операции сложения и умножения распространяются и на это множество по следующим правилам, которые сохраняют все вышеперечисленные свойства и на множестве $\mathbb{Q}$:
$\frac{p_1}{q_1}+\frac{p_2}{q_2}=\frac{p_1\cdot q_2+p_2\cdot q_1}{q_1\cdot q_2}$
$\frac{p-1}{q_1}\cdot \frac{p_2}{q_2}=\frac{p_1\cdot p_2}{q_1\cdot q_2}$

Деление вводится таким образом:
$\frac{p_1}{q_1}:\frac{p_2}{q_2}=\frac{p_1}{q_1}\cdot \frac{q_2}{p_2}$

На множестве $\mathbb{Q}$ уравнение $a\cdot x=b$ имеет единственное решение для каждого $a\neq 0$ (деление на ноль не определено). Это значит, что существует обратный элемент $\frac{1}{a}$ or $a^{-1}$:
$(\forall a\in \mathbb{Q}\setminus\lbrace 0\rbrace)(\exists \frac{1}{a})(a\cdot \frac{1}{a}=\frac{1}{a}\cdot a=a)$

Порядок множества $\mathbb{Q}$ можно расширить таким образом:
$\frac{p_1}{q_1}

Множество $\mathbb{Q}$ имеет одно важное свойство: между любыми двумя рациональными числами находится бесконечно много других рациональных чисел, следовательно, не существует двух соседних рациональных чисел, в отличие от множеств натуральных и целых чисел.

Иррациональные числа $\mathbb{I}$

Примеры иррациональных чисел:
$0.333333...$
$\sqrt{2} \approx 1.41422135...$
$\pi \approx 3.1415926535...$

Ввиду того, что между любыми двумя рациональными числами находится бесконечно много других рациональных чисел, легко можно сделать ошибочный вывод, что множество рациональных чисел настолько плотное, что нет необходимости в его дальнейшем расширении. Даже Пифагор в свое время сделал такую ошибку. Однако, уже его современники опровергли этот вывод при исследовании решений уравнения $x\cdot x=2$ ($x^2=2$) на множестве рациональных чисел. Для решения такого уравнения необходимо ввести понятие квадратного корня, и тогда решение этого уравнения имеет вид $x=\sqrt{2}$. Уравнение типа $x^2=a$, где $a$ - известное рациональное число, а $x$ - неизвестное, не всегда имеет решение на множестве рациональных чисел, и опять возникает необходимость в расширении множества. Возникает множество иррациональных чисел, и такие числа как $\sqrt{2}$, $\sqrt{3}$, $\pi$... принадлежат этому множеству.

Действительные числа $\mathbb{R}$

Объединением множеств рациональных и иррациональных чисел является множество действительных чисел. Поскольку $\mathbb{Q}\subset \mathbb{R}$, снова логично предположить, что введенные арифметические операции и отношения сохраняют свои свойства на новом множестве. Формальное доказательство этого весьма сложно, поэтому вышеупомянутые свойства арифметических операций и отношения на множестве действительных чисел вводятся как аксиомы. В алгебре такой объект называется полем, поэтому говорят, что множество действительных чисел является упорядоченным полем.

Для того, чтобы определение множества действительных чисел было полным, необходимо ввести дополнительную аксиому, различающую множества $\mathbb{Q}$ и $\mathbb{R}$. Предположим, что $S$ - непустое подмножество множества действительных чисел. Элемент $b\in \mathbb{R}$ называется верхней границей множества $S$, если $\forall x\in S$ справедливо $x\leq b$. Тогда говорят, что множество $S$ ограничено сверху. Наименьшая верхняя граница множества $S$ называется супремум и обозначается $\sup S$. Аналогично вводятся понятия нижней границы, множества, ограниченного снизу, и инфинума $\inf S$ . Теперь недостающая аксиома формулируется следующим образом:

Любое непустое и ограниченное сверху подмножество множества действительных чисел имеет супремум.
Также можно доказать, что поле действительных чисел, определенное вышеуказанным образом, является единственным.

Комплексные числа$\mathbb{C}$

Примеры комплексных чисел:
$(1, 2), (4, 5), (-9, 7), (-3, -20), (5, 19),...$
$1 + 5i, 2 - 4i, -7 + 6i...$ где $i = \sqrt{-1}$ или $i^2 = -1$

Множество комплексных чисел представляет собой все упорядоченные пары действительных чисел, то есть $\mathbb{C}=\mathbb{R}^2=\mathbb{R}\times \mathbb{R}$, на котором операции сложения и умножения определены следующим образом:
$(a,b)+(c,d)=(a+b,c+d)$
$(a,b)\cdot (c,d)=(ac-bd,ad+bc)$

Существует несколько форм записи комплексных чисел, из которых самая распространенная имеет вид $z=a+ib$, где $(a,b)$ - пара действительных чисел, а число $i=(0,1)$ называется мнимой единицей.

Легко показать, что $i^2=-1$. Расширение множества $\mathbb{R}$ на множество $\mathbb{C}$ позволяет определить квадратный корень из отрицательных чисел, что и послужило причиной введения множества комплексных чисел. Также легко показать, что подмножество множества $\mathbb{C}$, заданное как $\mathbb{C}_0=\lbrace (a,0)|a\in \mathbb{R}\rbrace$, удовлетворяет всем аксиомам для действительных чисел, следовательно $\mathbb{C}_0=\mathbb{R}$, или $R\subset\mathbb{C}$.

Алгебраическая структура множества $\mathbb{C}$ относительно операций сложения и умножения имеет следующие свойства:
1. коммутативность сложения и умножения
2. ассоциативность сложения и умножения
3. $0+i0$ - нейтральный элемент для сложения
4. $1+i0$ - нейтральный элемент для умножения
5. умножение дистрибутивно по отношению к сложению
6. существует единственный обратный элемент как для сложения, так и для умножения.

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...